Part Number Hot Search : 
CD450 122130 PI5C3306 N5415 SD125 M12541DD TS512 34286G2
Product Description
Full Text Search
 

To Download STM32F101RCT6TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STM32F101xC STM32F101xD STM32F101xE
High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
Features
Core: ARM 32-bit CortexTM-M3 CPU - 36 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance - Single-cycle multiplication and hardware division Memories - 256 to 512 Kbytes of Flash memory - up to 48 Kbytes of SRAM - Flexible static memory controller with 4 Chip Select. Supports Compact Flash, SRAM, PSRAM, NOR and NAND memories - LCD parallel interface, 8080/6800 modes Clock, reset and supply management - 2.0 to 3.6 V application supply and I/Os - POR, PDR, and programmable voltage detector (PVD) - 4-to-16 MHz crystal oscillator - Internal 8 MHz factory-trimmed RC - Internal 40 kHz RC with calibration capability - 32 kHz oscillator for RTC with calibration Low power - Sleep, Stop and Standby modes - VBAT supply for RTC and backup registers 1 x 12-bit, 1 s A/D converters (up to 16 channels) - Conversion range: 0 to 3.6 V - Temperature sensor 2 x 12-bit D/A converters DMA - 12-channel DMA controller - Peripherals supported: timers, ADC, DAC, SPIs, I2Cs and USARTs Up to 112 fast I/O ports
LQFP144
20 x 20 mm
LQFP100 14 x 14 mm
LQFP64 10 x 10 mm
- 51/80/112 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant
Debug mode - Serial wire debug (SWD) & JTAG interfaces - Cortex-M3 Embedded Trace MacrocellTM Up to 9 timers - Up to four 16-bit timers, each with up to 4 IC/OC/PWM or pulse counters - 2 x watchdog timers (Independent and Window) - SysTick timer: a 24-bit downcounter - 2 x 16-bit basic timers to drive the DAC Up to 10 communication interfaces - Up to 2 x I2C interfaces (SMBus/PMBus) - Up to 5 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) - Up to 3 SPIs (18 Mbit/s) CRC calculation unit, 96-bit unique ID ECOPACK(R) packages Device summary
Part number STM32F101RC STM32F101VC STM32F101ZC STM32F101RD STM32F101VD STM32F101ZD STM32F101RE STM32F101ZE STM32F101VE


Table 1.
Reference STM32F101xC STM32F101xD STM32F101xE

September 2009
Doc ID 14610 Rev 7
1/106
www.st.com 1
Contents
STM32F101xC, STM32F101xD, STM32F101xE
Contents
1 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 2.2 2.3 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 2.3.10 2.3.11 2.3.12 2.3.13 2.3.14 2.3.15 2.3.16 2.3.17 2.3.18 2.3.19 2.3.20 2.3.21 2.3.22 2.3.23 2.3.24 2.3.25 2.3.26 ARM(R) CortexTM-M3 core with embedded Flash and SRAM . . . . . . . . . 14 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 15 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 IC bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Universal synchronous/asynchronous receiver transmitters (USARTs) 20 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 21 Embedded Trace MacrocellTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Contents
4 5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 5.3
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 5.3.11 5.3.12 5.3.13 5.3.14 5.3.15 5.3.16 5.3.17 5.3.18 5.3.19 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 38 Embedded reset and power control block characteristics . . . . . . . . . . . 38 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 76 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1 6.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Doc ID 14610 Rev 7 3/106
Contents 6.2.2
STM32F101xC, STM32F101xD, STM32F101xE Evaluating the maximum junction temperature for an application . . . . 100
7 8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
List of tables
List of tables
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F101xC, STM32F101xD and STM32F101xE features and peripheral counts . . . . 11 STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 High-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 39 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 43 Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 43 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 47 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 57 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 58 Asynchronous multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Asynchronous multiplexed NOR/PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 65 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . . 71 Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 74 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Doc ID 14610 Rev 7
5/106
List of tables Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64.
STM32F101xC, STM32F101xD, STM32F101xE
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 LFBGA144 - 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data . . . . . . . . . . . . . 96 LQPF100 - 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 97 LQFP64 - 10 x 10 mm, 64 pin low-profile quad flat package mechanical data . . . . . . . . . 98 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
List of figures
List of figures
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. STM32F101xC, STM32F101xD and STM32F101xE access line block diagram . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 STM32F101xC, STM32F101xD and STM32F101xE access line LQFP144 pinout . . . . . . 23 STM32F101xC, STM32F101xD and STM32F101xE LQFP100 pinout . . . . . . . . . . . . . . . 24 STM32F101xC, STM32F101xD and STM32F101xE LQFP64 pinout . . . . . . . . . . . . . . . . 25 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 42 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 42 Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Typical current consumption in Standby mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 56 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 57 Asynchronous multiplexed NOR/PSRAM read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 58 Asynchronous multiplexed NOR/PSRAM write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 60 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 65 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 67 PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 68 PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 70 PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 71 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 73 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 74 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Doc ID 14610 Rev 7
7/106
List of figures Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58.
STM32F101xC, STM32F101xD, STM32F101xE
I2C bus AC waveforms and measurement circuit(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 SPI timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 90 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 91 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 94 LFBGA144 - 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 LQFP144, 20 x 20 mm, 144-pin thin quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 LQFP100 - 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 97 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 LQFP64 - 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 98 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Introduction
1
Introduction
This datasheet provides the ordering information and mechanical device characteristics of the STM32F101xC, STM32F101xD and STM32F101xE high-density access line microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2: Full compatibility throughout the family. The high-density STM32F101xx datasheet should be read in conjunction with the STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the CortexTM-M3 core please refer to the CortexTM-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Doc ID 14610 Rev 7
9/106
Description
STM32F101xC, STM32F101xD, STM32F101xE
2
Description
The STM32F101xC, STM32F101xD and STM32F101xE access line family incorporates the high-performance ARM(R) CortexTM-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 48 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer one 12-bit ADC, four general-purpose 16-bit timers, as well as standard and advanced communication interfaces: up to two I2Cs, three SPIs and five USARTs. The STM32F101xx high-density access line family operates in the -40 to +85 C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F101xx high-density access line family offers devices in 3 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F101xx high-density access line microcontroller family suitable for a wide range of applications:

Medical and handheld equipment PC peripherals gaming and GPS platforms Industrial applications, PLC, printers, and scanners Alarm systems and video intercom
Figure 1 shows the general block diagram of the device family.
10/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Description
2.1
Device overview
Table 2. STM32F101xC, STM32F101xD and STM32F101xE features and peripheral counts
STM32F101Rx 256 32 No Generalpurpose Basic SPI Comm I2C USART GPIOs 12-bit ADC Number of channels 12-bit DAC Number of channels CPU frequency Operating voltage Operating temperatures Package 51 1 16 384 48 512 STM32F101Vx 256 32 Yes(1) 4 2 3 2 5 80 1 16 1 2 36 MHz 2.0 to 3.6 V Ambient temperature: -40 to +85 C (see Table 10) Junction temperature: -40 to +105 C (see Table 10) LQFP64 LQFP100 LQFP144 112 1 16 384 48 512 STM32F101Zx 256 32 Yes 384 48 512
Peripherals Flash memory in Kbytes SRAM in Kbytes FSMC
Timers
1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.
Doc ID 14610 Rev 7
11/106
Description Figure 1.
STM32F101xC, STM32F101xD, STM32F101xE STM32F101xC, STM32F101xD and STM32F101xE access line block diagram
TRACECLK TRACED[0:3] as AS NJTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO as AF
TPIU SW/JTAG Trace/trig Pbus Ibus Cortex-M3 CPU Fmax: 36 MHz Dbus System NVIC GP DMA1 7 channels GP DMA2 Bus Matrix SRAM 48 KB @V DDA RC 8 MHz RC 40 kHz PLL PCLK1 PCLK2 HCLK FCLK POR Reset Int Trace controller Flash obl interface Flash 512 Kbytes 64 bit VDD
@VDD Power Volt. reg. 3.3 V to 1.8 V @VDDA Supply supervision POR /PDR PVD @VDD XTAL OSC 4-16 MHz IWDG Standby interface @VBAT XTAL32kHz RTC Backup reg AWU Backup interface VBAT =1.8 V to 3.6 V OSC32_IN OSC32_OUT TAMPER-RTC/ ALARM/SECOND OUT VSS
NRST VDDA VSSA
OSC_IN OSC_OUT
A[25:0] D[15:0] CLK NOE NWE NE[4:1] NBL[1:0] NWAIT NL as AF
5 channels
Reset & Clock control
FSMC
AHB2 APB2 112AF PA[15:0] PB[15:0] PC[15:0] PD[15:0] PE[15:0] PF[15:0] PG[15:0] MOSI, MISO, SCK, NSS as AF RX, TX, CTS, RTS as AF EXT.IT WKUP
AHB2 APB1
TIM2 TIM3 APB1: Fmax = 24/36 MHz TIM4 TIM5 USART2 USART3 UART4 UART5 SPI2 SPI3 I2C1 WWDG I2C2
4 channels as AF 4 channels as AF 4 channels as AF 4 channels as AF RX, TX CTS, RTS , , CK, as AF RX, TX, CTS, RTS, CK, as AF RX,TX as AF RX,TX as AF MOSI, MISO SCK, NSS as AF MOSI, MISO SCK, NSS as AF SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF
GPIO port A GPIO port B GPIO port C GPIO port D GPIO port E GPIO port F GPIO port G SPI1 USART1 Temp. sensor APB2: Fmax = 24/36 MHz
ADC_IN[0:15]
12-bit ADC
IF
TIM6 TIM7
IF 12bit DAC1 IF 12bit DAC 2
DAC_OUT1 as AF DAC_OUT2 as AF
VREF- VREF+
@ VDDA
@VDDA ai14693d
1. TA = -40 C to +85 C (junction temperature up to 105 C). 2. AF = alternate function on I/O port pin.
12/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Figure 2. Clock tree
Description
8 MHz HSI RC
HSI FSMCCLK
/2
Peripheral clock enable 36 MHz max Clock Enable (7 bits)
to FSMC
HCLK to AHB bus, core, memory and DMA to Cortex System timer FCLK Cortex free running clock PCLK1 to APB1 peripherals Peripheral Clock
Enable (18 bits)
PLLSRC
PLLMUL ..., x16 x2, x3, x4 PLL
HSI PLLCLK HSE
SW
SYSCLK
/8
36 MHz /1, 2..512 max
AHB Prescaler
APB1 Prescaler /1, 2, 4, 8, 16
36 MHz max
CSS
TIM2,3,4,5,6,7 If (APB1 prescaler =1) x1 else x2
to TIM2,3,4,5,6 and 7 TIMXCLK
Peripheral Clock Enable (6 bits)
PLLXTPRE OSC_OUT OSC_IN 4-16 MHz HSE OSC /2
APB2 Prescaler /1, 2, 4, 8, 16
36 MHz max Peripheral Clock Enable (11 bits)
PCLK2 peripherals to APB2
/128 OSC32_IN OSC32_OUT LSE OSC 32.768 kHz
LSE to RTC
ADC Prescaler /2, 4, 6, 8 RTCCLK
to ADC
ADCCLK
RTCSEL[1:0] LSI RC 40 kHz
LSI to Independent Watchdog (IWDG)
IWDGCLK
Main Clock Output
/2
PLLCLK HSI HSE SYSCLK
Legend: HSE = High Speed External clock signal HSI = High Speed Internal clock signal LSI = Low Speed Internal clock signal LSE = Low Speed External clock signal ai15100
MCO
MCO
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz. 2. To have an ADC conversion time of 1 s, APB2 must be at 14 MHz or 28 MHz.
Doc ID 14610 Rev 7
13/106
Description
STM32F101xC, STM32F101xD, STM32F101xE
2.2
Full compatibility throughout the family
The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are identified as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are referred to as high-density devices. Low- and high-density devices are an extension of the STM32F101x8/B medium-density devices, they are specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM densities, and additional peripherals like FSMC and DACwhile remaining fully compatible with the other members of the family. The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE are a drop-in replacement for the STM32F101x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. Moreover, the STM32F101xx access line family is fully compatible with all existing STM32F103xx performance line and STM32F102xx USB access line devices. Table 3. STM32F101xx family
Memory size Low-density devices Pinout 16 KB Flash 32 KB Flash(1) Medium-density devices 64 KB Flash 128 KB Flash High-density devices 256 KB Flash 32 KB RAM 384 KB Flash 48 KB RAM 512 KB Flash 48 KB RAM
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM 144 100 64 48 36 2 x USARTs 2 x 16-bit timers 1 x SPI, 1 x I2C 1 x ADC 3 x USARTs 3 x 16-bit timers 2 x SPIs, 2 x I2Cs, 1 x ADC
5 x USARTs 4 x 16-bit timers, 2 x basic timers 3 x SPIs, 2 x I2Cs, 1 x ADC, 2 x DACs FSMC (100 and 144 pins)
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.
2.3
2.3.1
Overview
ARM(R) CortexTM-M3 core with embedded Flash and SRAM
The ARM CortexTM-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
14/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Description
The ARM CortexTM-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F101xC, STM32F101xD and STM32F101xE access line family having an embedded ARM core, is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family.
2.3.2
Embedded Flash memory
256 to 512 Kbytes of embedded Flash are available for storing programs and data.
2.3.3
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
2.3.4
Embedded SRAM
Up to 48 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.
2.3.5
FSMC (flexible static memory controller)
The FSMC is embedded in the STM32F101xC, STM32F101xD and STM32F101xE access line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND. Functionality overview:

The three FSMC interrupt lines are ORed in order to be connected to the NVIC No read FIFO Code execution from external memory except for NAND Flash and PC Card No boot capability The targeted frequency is HCLK/2, so external access is at 18 MHz when HCLK is at 36 MHz
2.3.6
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration.
Doc ID 14610 Rev 7
15/106
Description
STM32F101xC, STM32F101xD, STM32F101xE
2.3.7
Nested vectored interrupt controller (NVIC)
The STM32F101xC, STM32F101xD and STM32F101xE access line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of CortexTM-M3) and 16 priority levels.

Closely coupled NVIC gives low-latency interrupt processing Interrupt entry vector table address passed directly to the core Closely coupled NVIC core interface Allows early processing of interrupts Processing of late arriving higher priority interrupts Support for tail-chaining Processor state automatically saved Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.
2.3.8
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.
2.3.9
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2) domain and the low-speed APB (APB1) domain. The maximum frequency of the AHB and APB domains is 36 MHz. See Figure 2 for details on the clock tree.
2.3.10
Boot modes
At startup, boot pins are used to select one of three boot options:

Boot from User Flash Boot from System Memory Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1.
16/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Description
2.3.11
Power supply schemes

VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 9: Power supply scheme.
2.3.12
Power supply supervisor
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 12: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD.
2.3.13
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.

MR is used in the nominal regulation mode (Run) LPR is used in the Stop modes. Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.
2.3.14
Low-power modes
The STM32F101xC, STM32F101xD and STM32F101xE access line supports three lowpower modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.
Doc ID 14610 Rev 7
17/106
Description
STM32F101xC, STM32F101xD, STM32F101xE The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.
Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.
2.3.15
DMA
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-toperipheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose and basic timers TIMx, DAC and ADC.
2.3.16
RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
2.3.17
Timers and watchdogs
The high-density STM32F101xx access line devices include up to four general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. Table 4 compares the features of the general-purpose and basic timers.
18/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 4.
Timer TIM2, TIM3, TIM4, TIM5 TIM6, TIM7
Description
Timer feature comparison
Counter resolution Counter type Up, down, up/down Prescaler factor Any integer between 1 and 65536 Any integer between 1 and 65536 DMA request Capture/compare Complementary generation channels outputs
16-bit
Yes
4
No
16-bit
Up
Yes
0
No
General-purpose timers (TIMx)
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F101xC, STM32F101xD and STM32F101xE access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages. The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
Doc ID 14610 Rev 7
19/106
Description
STM32F101xC, STM32F101xD, STM32F101xE
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

A 24-bit down counter Autoreload capability Maskable system interrupt generation when the counter reaches 0. Programmable clock source
2.3.18
IC bus
Up to two IC bus interfaces can operate in multi-master and slave modes. They support standard and fast modes. They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus.
2.3.19
Universal synchronous/asynchronous receiver transmitters (USARTs)
The STM32F101xC, STM32F101xD and STM32F101xE access line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5). These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The five interfaces are able to communicate at speeds of up to 2.25 Mbit/s. USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.
2.3.20
Serial peripheral interface (SPI)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
2.3.21
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable except for analog inputs. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.
20/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Description
2.3.22
ADC (analog to digital converter)
A 12-bit analog-to-digital converter is embedded into STM32F101xC, STM32F101xD and STM32F101xE access line devices. It has up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.
2.3.23
DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This dual digital Interface supports the following features:

two DAC converters: one for each output channel 8-bit or 12-bit monotonic output left or right data alignment in 12-bit mode synchronized update capability noise-wave generation triangular-wave generation dual DAC channel independent or simultaneous conversions DMA capability for each channel external triggers for conversion input voltage reference VREF+
Seven DAC trigger inputs are used in the STM32F101xC, STM32F101xD and STM32F101xE access line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.
2.3.24
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.
2.3.25
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
Doc ID 14610 Rev 7
21/106
Description
STM32F101xC, STM32F101xD, STM32F101xE
2.3.26
Embedded Trace MacrocellTM
The ARM(R) Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
22/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Pinouts and pin descriptions
3
Figure 3.
Pinouts and pin descriptions
STM32F101xC, STM32F101xD and STM32F101xE access line LQFP144 pinout
VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD_11 VSS_11 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD_10 VSS_10 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14
PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS_5 VDD_5 PF6 PF7 PF8 PF9 PF10 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109
LQFP144
108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73
VDD_2 VSS_2 NC PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDD_9 VSS_9 PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD_8 VSS_8 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12
VDD_6 PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS_7 VDD_7 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1
VSS_6
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
ai14667
Doc ID 14610 Rev 7
23/106
Pinouts and pin descriptions Figure 4.
STM32F101xC, STM32F101xD, STM32F101xE
STM32F101xC, STM32F101xD and STM32F101xE LQFP100 pinout
VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14
PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
LQFP100
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_2 VSS_2 NC PA 13 PA 12 PA 11 PA 10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
ai14391
24/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Figure 5.
Pinouts and pin descriptions
STM32F101xC, STM32F101xD and STM32F101xE LQFP64 pinout
VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14
VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0-OSC_IN PD1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1
ai14392
Table 5.
Pins LQFP144
High-density STM32F101xx pin definitions
I / O Level(2) Alternate functions(4) Main function(3) (after reset) PE2 PE3 PE4 PE5 PE6 VBAT PC13(6) PC14(6) PC15(6) PF0 PF1 PF2 PF3 PF4 PF5 VSS_5 VDD_5 TAMPER-RTC OSC32_IN OSC32_OUT FSMC_A0 FSMC_A1 FSMC_A2 FSMC_A3 FSMC_A4 FSMC_A5 Type(1)
LQFP100
LQFP64
Pin name
Default TRACECLK/ FSMC_A23 TRACED0/FSMC_A19 TRACED1/FSMC_A20 TRACED2/FSMC_A21 TRACED3/FSMC_A22
Remap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 -
1 2 3 4 5 6 7 8 9 10 11
PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC
(5)
I/O I/O I/O I/O I/O S I/O I/O I/O
FT FT FT FT FT
PC14-OSC32_IN(5) PC15-OSC32_OUT(5) PF0 PF1 PF2 PF3 PF4 PF5 VSS_5 VDD_5
I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S S
Doc ID 14610 Rev 7
25/106
Pinouts and pin descriptions Table 5.
Pins LQFP144 LQFP100 LQFP64 Pin name Type(1)
STM32F101xC, STM32F101xD, STM32F101xE
High-density STM32F101xx pin definitions (continued)
I / O Level(2) Alternate functions(4) Main function(3) (after reset) PF6 PF7 PF8 PF9 PF10 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0 WKUP/ USART2_CTS(7)/ ADC_IN0/TIM5_CH1/ TIM2_CH1_ETR(7) USART2_RTS(7)/ ADC_IN1/TIM5_CH2 TIM2_CH2(7) USART2_TX(7)/ TIM5_CH3/ADC_IN2/ TIM2_CH3(7) USART2_RX(7)/ TIM5_CH4 / ADC_IN3/ TIM2_CH4(7) ADC_IN10 ADC_IN11 ADC_IN12 ADC_IN13
Default FSMC_NIORD FSMC_NREG FSMC_NIOWR FSMC_CD FSMC_INTR
Remap
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
5 6 7 8 9 10 11 12 13 14
12 13 14 15 16 17 18 19 20 21 22 23
PF6 PF7 PF8 PF9 PF10 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP
I/O I/O I/O I/O I/O I O I/O I/O I/O I/O I/O S S S S I/O
35
15
24
PA1
I/O
PA1
36
16
25
PA2
I/O
PA2
37 38 39 40 41 42
17 18 19 20 21 22
26 27 28 29 30 31
PA3 VSS_4 VDD_4 PA4 PA5 PA6
I/O S S I/O I/O I/O
PA3 VSS_4 VDD_4 PA4 PA5 PA6
SPI1_NSS/ DAC_OUT1 ADC_IN4 / USART2_CK(7) SPI1_SCK/ DAC_OUT2/ADC_IN5 SPI1_MISO / ADC_IN6 / TIM3_CH1(7)
26/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 5.
Pins LQFP144 LQFP100 LQFP64 Pin name Type(1)
Pinouts and pin descriptions
High-density STM32F101xx pin definitions (continued)
I / O Level(2) Alternate functions(4) Main function(3) (after reset)
Default SPI1_MOSI / ADC_IN7/ TIM3_CH2(7) ADC_IN14 ADC_IN15 ADC_IN8 / TIM3_CH3(7) ADC_IN9/TIM3_CH4(7)
Remap
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
23 24 25 26 27 28 29 30 31 32 33
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS_6 VDD_6 PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS_7 VDD_7 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PB12
I/O I/O I/O I/O I/O I/O FT I/O FT I/O FT S S I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S S I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S S I/O FT
PA7 PC4 PC5 PB0 PB1 PB2/BOOT1 PF11 PF12 VSS_6 VDD_6 PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS_7 VDD_7 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PB12
FSMC_NIOS16 FSMC_A6
FSMC_A7 FSMC_A8 FSMC_A9 FSMC_A10 FSMC_A11 FSMC_D4 FSMC_D5 FSMC_D6
FSMC_D7 FSMC_D8 FSMC_D9 FSMC_D10 FSMC_D11 FSMC_D12 I2C2_SCL/ USART3_TX(7) I2C2_SDA/ USART3_RX(7) TIM2_CH3 TIM2_CH4
SPI2_NSS(7)/ I2C2_SMBA USART3_CK(7)
Doc ID 14610 Rev 7
27/106
Pinouts and pin descriptions Table 5.
Pins LQFP144 LQFP100 LQFP64 Pin name Type(1)
STM32F101xC, STM32F101xD, STM32F101xE
High-density STM32F101xx pin definitions (continued)
I / O Level(2) Alternate functions(4) Main function(3) (after reset)
Default SPI2_SCK(7)/ USART3_CTS(7) SPI2_MISO(7)/ USART3_RTS(7) SPI2_MOSI(7) FSMC_D13 FSMC_D14 FSMC_D15 FSMC_A16 FSMC_A17 FSMC_A18
Remap
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
34 35 36 37 38 39 40 41 42 43 44
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
PB13 PB14 PB15 PD8 PD9 PD10 PD11 PD12 PD13 VSS_8 VDD_8 PD14 PD15 PG2 PG3 PG4 PG5 PG6 PG7 PG8 VSS_9 VDD_9 PC6 PC7 PC8 PC9 PA8 PA9 PA10 PA11
I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S S I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S S I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT
PB13 PB14 PB15 PD8 PD9 PD10 PD11 PD12 PD13 VSS_8 VDD_8 PD14 PD15 PG2 PG3 PG4 PG5 PG6 PG7 PG8 VSS_9 VDD_9 PC6 PC7 PC8 PC9 PA8 PA9 PA10 PA11
USART3_TX USART3_RX USART3_CK USART3_CTS TIM4_CH1 / USART3_RTS TIM4_CH2
FSMC_D0 FSMC_D1 FSMC_A12 FSMC_A13 FSMC_A14 FSMC_A15 FSMC_INT2 FSMC_INT3
TIM4_CH3 TIM4_CH4
TIM3_CH1 TIM3_CH2 TIM3_CH3 TIM3_CH4 USART1_CK/ MCO USART1_TX(7) USART1_RX(7) USART1_CTS
28/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 5.
Pins LQFP144 LQFP100 LQFP64 Pin name Type(1)
Pinouts and pin descriptions
High-density STM32F101xx pin definitions (continued)
I / O Level(2) Alternate functions(4) Main function(3) (after reset) PA12 JTMS-SWDIO
Default USART1_RTS
Remap
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
45 46 47 48 49 50 51 52 53 5 6 54 -
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 -
PA12 PA13
I/O FT I/O FT
PA13
Not connected VSS_2 VDD_2 PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 VSS_10 VDD_10 PD6 PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11 VDD_11 PG15 S S I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S S I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S S I/O FT VSS_2 VDD_2 JTCK-SWCLK JTDI PC10 PC11 PC12 OSC_IN(8) OSC_OUT(8) PD2 PD3 PD4 PD5 VSS_10 VDD_10 PD6 PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11 VDD_11 PG15 FSMC_NWAIT FSMC_NE1/ FSMC_NCE2 FSMC_NE2/ FSMC_NCE3 FSMC_NE3/ FSMC_NCE4_1 FSMC_NCE4_2 FSMC_NE4 FSMC_A24 FSMC_A25 USART2_RX USART2_CK SPI3_NSS UART4_TX UART4_RX UART5_TX FSMC_D2(9) FSMC_D3(9) TIM3_ETR/UART5_RX FSMC_CLK FSMC_NOE FSMC_NWE USART2_CTS USART2_RTS USART2_TX PA14 TIM2_CH1_ETR/ PA15 /SPI1_NSS USART3_TX USART3_RX USART3_CK
Doc ID 14610 Rev 7
29/106
Pinouts and pin descriptions Table 5.
Pins LQFP144 LQFP100 LQFP64 Pin name Type(1)
STM32F101xC, STM32F101xD, STM32F101xE
High-density STM32F101xx pin definitions (continued)
I / O Level(2) Alternate functions(4) Main function(3) (after reset)
Default
Remap TIM2_CH2 /PB3 TRACESWO SPI1_SCK PB4 / TIM3_CH1 SPI1_MISO TIM3_CH2 / SPI1_MOSI USART1_TX USART1_RX
133
55
89
PB3
I/O FT
JTDO
SPI3_SCK
134 135 136 137 138 139 140 141 142 143 144
56 57 58 59 60 61 62 63 64
90 91 92 93 94 95 96 97 98 99 100
PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3
I/O FT I/O I/O FT I/O FT I I/O FT I/O FT I/O FT I/O FT S S
NJTRST PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3
SPI3_MISO I2C1_SMBA/ SPI3_MOSI I2C1_SCL/ TIM4_CH1(7) I2C1_SDA/FSMC_NADV TIM4_CH2(7)
TIM4_CH3 (7) TIM4_CH4
(7) (7)/
I2C1_SCL I2C1_SDA
TIM4_ETR FSMC_NBL0
FSMC_NBL1
1. I = input, O = output, S = supply. 2. FT = 5 V tolerant. 3. Function availability depends on the chosen device. 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). 5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 8. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual 9. For devices delivered in LQFP64 packages, the FSMC function is not available.
30/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 6.
Pins CF PE2 PE3 PE4 PE5 PE6 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PD8 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 A0 A1 A2 A3 A4 A5 NIORD NREG NIOWR CD INTR NIOS16 A6 A7 A8 A9 A10 NIORD NREG NIOWR CD INTR NIOS16 A6 A7 A8 A9 A10 A11 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 DA4 DA5 DA6 DA7 DA8 DA9 DA10 DA11 DA12 DA13 A0 A1 A2 CF/IDE
Pinouts and pin descriptions
FSMC pin definition
FSMC NOR/PSRAM/ SRAM A23 A19 A20 A21 A22 A0 A1 A2 A3 A4 A5 NOR/PSRAM Mux A23 A19 A20 A21 A22 NAND 16 bit LQFP100 BGA100(1) Yes Yes Yes Yes Yes D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Doc ID 14610 Rev 7
31/106
Pinouts and pin descriptions Table 6.
Pins CF PD9 PD10 PD11 PD12 PD13 PD14 PD15 PG2 PG3 PG4 PG5 PG6 PG7 PD0 PD1 PD3 PD4 PD5 PD6 PD7 PG9 PG10 PG11 PG12 PG13 PG14 PB7 PE0 PE1 NCE4_1 NCE4_2 NCE4_1 NCE4_2 NOE NWE NWAIT NOE NWE NWAIT D2 D3 D2 D3 D2 D3 D0 D1 D0 D1 D14 D15 CF/IDE D14 D15
STM32F101xC, STM32F101xD, STM32F101xE
FSMC pin definition (continued)
FSMC NOR/PSRAM/ SRAM D14 D15 A16 A17 A18 D0 D1 A12 A13 A14 A15 INT2 INT3 DA2 DA3 CLK NOE NWE NWAIT NE1 NE2 NE3 NOE NWE NWAIT NCE2 NCE3 D2 D3 NOR/PSRAM Mux DA14 DA15 A16 A17 A18 DA0 DA1 D0 D1 NAND 16 bit D14 D15 CLE ALE LQFP100 BGA100(1) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes NE4 A24 A25 NADV NBL0 NBL1 NE4 A24 A25 NADV NBL0 NBL1 Yes Yes Yes
CLK NOE NWE NWAIT NE1 NE2 NE3
1. Ports F and G are not available in devices delivered in 100-pin packages.
32/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Memory mapping
4
Memory mapping
The memory map is shown in Figure 6. Figure 6. Memory map
Reserved FSMC register FSMC bank 4 PCCARD FSMC bank 3 NAND (NAND2) FSMC bank 2 NAND (NAND1) FSMC bank 1 NOR/PSRAM 4 FSMC bank 1 NOR/PSRAM 3 FSMC bank 1 NOR/PSRAM 2 FSMC bank 1 NOR/PSRAM 1 Reserved CRC Reserved Flash interface Reserved RCC Reserved DMA2 DMA1 Reserved Reserved 0xA000 1000 - 0xBFFF FFFF 0xA000 0000 - 0xA000 0FFF 0x9000 0000 - 0x9FFF FFFF 0x8000 0000 - 0x8FFF FFFF 0x7000 0000 - 0x7FFF FFFF 0x6C00 0000 - 0x6FFF FFFF 0x6800 0000 - 0x6BFF FFFF 0x6400 0000 - 0x67FF FFFF 0x6000 0000 - 0x63FF FFFF 0x4002 3400 - 0x5FFF FFFF 0x4002 3000 - 0x4002 33FF 0x4002 2400 - 0x4002 2FFF 0x4002 2000 - 0x4002 23FF 0x4002 1400 - 0x4002 1FFF 0x4002 1000 - 0x4002 13FF 0x4002 0400 - 0x4002 0FFF 0x4002 0400 - 0x4002 07FF 0x4002 0000 - 0x4002 03FF 0x4001 8400 - 0x4001 FFFF 0x4001 8000 - 0x4001 83FF 0x4001 3C00 - 0x4001 7FFF 0x4001 3800 - 0x4001 3BFF 0x4001 3400 - 0x4001 37FF 0x4001 3000 - 0x4001 33FF 0x4001 2800 - 0x4001 2FFF 0x4001 2400 - 0x4001 27FF 0x4001 2000 - 0x4001 23FF 0x4001 1C00 - 0x4001 1FFF 0x4001 1800 - 0x4001 1BFF 0x4001 1400 - 0x4001 17FF 0x4001 1000 - 0x4001 13FF 0x4001 0C00 - 0x4001 0FFF 0x4001 0800 - 0x4001 0BFF 0x4001 0400 - 0x4001 07FF 0x4001 0000 - 0x4001 03FF 0x4000 7800 - 0x4000 FFFF 0x4000 7400 - 0x4000 77FF 0x4000 7000 - 0x4000 73FF 0x4000 6C00 - 0x4000 6FFF 0x4000 5C00 - 0x4000 6BFF 0x4000 5800 - 0x4000 5BFF 0x4000 5400 - 0x4000 57FF 0x4000 5000 - 0x4000 53FF 0x4000 4C00 - 0x4000 4FFF 0x4000 4800 - 0x4000 4BFF 0x4000 4400 - 0x4000 47FF 0x4000 4000 - 0x4000 43FF 0x4000 3C00 - 0x4000 3FFF 0x4000 3800 - 0x4000 3BFF 0x4000 3400 - 0x4000 37FF 0x4000 3000 - 0x4000 33FF 0x4000 2C00 - 0x4000 2FFF 0x4000 2800 - 0x4000 2BFF 0x4000 1800 - 0x4000 27FF 0x4000 1400 - 0x4000 17FF 0x4000 1000 - 0x4000 13FF 0x4000 0C00 - 0x4000 0FFF 0x4000 0800 - 0x4000 0BFF 0x4000 0400 - 0x4000 07FF 0x4000 0000 - 0x4000 03FF
0xFFFF FFFF
0xE000 0000 0xDFFF FFFF
512-Mbyte block 7 Cortex-M3's internal peripherals 512-Mbyte block 6 Not used
Reserved USART1 Reserved SPI1 Reserved ADC1 Port G Port F Port E Port D Port C Port B Port A EXTI AFIO Reserved DAC PWR BKP Reserved I2C2 I2C1 UART5 UART4 USART3 USART2 Reserved SPI3 SPI2 Reserved IWDG WWDG RTC Reserved TIM7 TIM6 TIM5
0xC000 0000 0xBFFF FFFF 512-Mbyte block 5 FSMC register 0xA000 0000 0x9FFF FFFF 512-Mbyte block 4 FSMC bank3 & bank4 512-Mbyte block 3 FSMC bank1 & bank2 512-Mbyte block 2 Peripherals 0x4000 0000 0x3FFF FFFF 512-Mbyte block 1 SRAM 0x2000 0000 0x1FFF FFFF 512-Mbyte block 0 Code 0x0000 0000 Reserved SRAM (48 KB aliased by bit-banding) Option Bytes System memory Reserved Flash Reserved Aliased to Flash or system memory depending on BOOT pins
0x3FFF FFFF 0x2000 C000 0x2000 BFFF 0x2000 0000
0x8000 0000 0x7FFF FFFF
0x6000 0000 0x5FFF FFFF
TIM4 TIM3 TIM2
0x1FFF F800 - 0x1FFF F80F 0x1FFF F000- 0x1FFF F7FF 0x1FFF EFFF 0x0808 0000 0x0807 FFFF 0x0800 0000 0x07FF FFFF 0x0008 0000 0x0007 FFFF 0x0000 0000
ai14811c
Doc ID 14610 Rev 7
33/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
5
5.1
Electrical characteristics
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 C, VDD = 3.3 V (for the 2 V VDD 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
34/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8. Figure 7. Pin loading conditions Figure 8. Pin input voltage
STM32F101 PIN C=50pF
VIN
STM32F101 PIN
ai14123
ai14124
5.1.6
Power supply scheme
Figure 9. Power supply scheme
VBAT
1.8-3.6V
Po wer swi tch
Backup circuitry (OSC32K,RTC, Wake-up logic Backup registers)
OUT
Level shifter
GP I/Os
IN
IO Logic Kernel logic (CPU, Digital & Memories)
VDD VDD1/2/.../11
Regulator
11 x 100 nF + 1 x 4.7 F
VSS1/2/.../11 VDD VREF VDDA VREF+ VREFVSSA
ai15401
10 nF + 1 F
10 nF + 1 F
ADC
Analog: RCs, PLL, ...
Caution:
In Figure 9, the 4.7 F capacitor must be connected to VDD3.
Doc ID 14610 Rev 7
35/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
5.1.7
Current consumption measurement
Figure 10. Current consumption measurement scheme
IDD_VBAT VBAT
IDD VDD
VDDA
ai14126
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics, Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7.
Symbol VDD VSS VIN |VDDx| |VSSX VSS|
Voltage characteristics
Ratings External main supply voltage (including VDDA and VDD)(1) Input voltage on five volt tolerant pin(2) Input voltage on any other pin(2) Variations between different VDD power pins Variations between all the different ground pins Electrostatic discharge voltage (human body model) Min -0.3 VSS 0.3 VSS 0.3 Max 4.0 +5.5 VDD+0.3 50 mV 50 see Section 5.3.12: Absolute maximum ratings (electrical sensitivity) V Unit
VESD(HBM)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. IINJ(PIN) must never be exceeded (see Table 8: Current characteristics). This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN> VINmax while a negative injection is induced by VIN36/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 8.
Symbol IVDD IVSS IIO
Electrical characteristics
Current characteristics
Ratings Total current into VDD/VDDA power lines (source)(1) Total current out of VSS ground lines (sink)
(1)
Max. 150 150 25 25 5 5 5 pins)(4) 25
Unit
Output current sunk by any I/O and control pin Output current source by any I/Os and control pin Injected current on NRST pin IINJ(PIN) (2)(3) Injected current on High-speed external OSC_IN and Lowspeed external OSC_IN pins Injected current on any other pin(4) IINJ(PIN)
(2)
mA
Total injected current (sum of all I/O and control
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VINTable 9.
Thermal characteristics
Ratings Storage temperature range Maximum junction temperature Value -65 to +150 150 Unit C C
Symbol TSTG TJ
Doc ID 14610 Rev 7
37/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
5.3
5.3.1
Operating conditions
General operating conditions
Table 10.
Symbol fHCLK fPCLK1 fPCLK2 VDD
General operating conditions
Parameter Internal AHB clock frequency Internal APB1 clock frequency Internal APB2 clock frequency Standard operating voltage Analog operating voltage (ADC not used) Analog operating voltage (ADC used) Backup operating voltage LQFP144 Power dissipation at TA = 85 C(3) Conditions Min 0 0 0 2 2 Must be the same potential as VDD(2) 2.4 1.8 Max 36 36 36 3.6 3.6 V 3.6 3.6 666 434 444 -40 -40 -40 85 105 105 C C C mW V V MHz Unit
VDDA(1)
VBAT
PD
LQFP100 LQFP64 Maximum power dissipation
TA TJ
Ambient temperature Junction temperature range
Low power dissipation(4)
1. When the ADC is used, refer to Table 53: ADC characteristics. 2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and operation. 3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 99). 4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 99).
5.3.2
Operating conditions at power-up / power-down
The parameters given in Table 11 are derived from tests performed under the ambient temperature condition summarized in Table 10. Table 11.
Symbol tVDD
Operating conditions at power-up / power-down
Parameter VDD rise time rate VDD fall time rate Conditions Min 0 20 Max Unit s/V

5.3.3
Embedded reset and power control block characteristics
The parameters given in Table 12 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10.
38/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 12.
Symbol
.
Electrical characteristics
Embedded reset and power control block characteristics
Parameter Conditions PLS[2:0]=000 (rising edge) PLS[2:0]=000 (falling edge) PLS[2:0]=001 (rising edge) PLS[2:0]=001 (falling edge) PLS[2:0]=010 (rising edge) PLS[2:0]=010 (falling edge) PLS[2:0]=011 (rising edge) Min 2.1 2 2.19 2.09 2.28 2.18 2.38 2.28 2.47 2.37 2.57 2.47 2.66 2.56 2.76 2.66 Typ 2.18 2.08 2.28 2.18 2.38 2.28 2.48 2.38 2.58 2.48 2.68 2.58 2.78 2.68 2.88 2.78 100 Falling edge Rising edge 1.8(1) 1.84 1.88 1.92 40 1.5 2.5 3.5 1.96 2.0 Max 2.26 2.16 2.37 2.27 2.48 2.38 2.58 2.48 2.69 2.59 2.79 2.69 2.9 2.8 3 2.9 Unit V V V V V V V V V V V V V V V V mV V V mV ms
VPVD
Programmable voltage detector level selection
PLS[2:0]=011 (falling edge) PLS[2:0]=100 (rising edge) PLS[2:0]=100 (falling edge) PLS[2:0]=101 (rising edge) PLS[2:0]=101 (falling edge) PLS[2:0]=110 (rising edge) PLS[2:0]=110 (falling edge) PLS[2:0]=111 (rising edge) PLS[2:0]=111 (falling edge)
VPVDhyst
(2)
PVD hysteresis Power on/power down reset threshold PDR hysteresis
VPOR/PDR VPDRhyst
(2)
tRSTTEMPO(2) Reset temporization
2. Guaranteed by design, not tested in production.
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
Doc ID 14610 Rev 7
39/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
5.3.4
Embedded reference voltage
The parameters given in Table 13 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 13.
Symbol VREFINT TS_vrefint(1) VRERINT(2) TCoeff(2)
Embedded internal reference voltage
Parameter Internal reference voltage ADC sampling time when reading the internal reference voltage Internal reference voltage spread over the temperature range Temperature coefficient VDD = 3 V 10 mV Conditions -40 C < TA < +85 C Min 1.16 Typ 1.20 5.1 Max 1.24 17.1(2) 10 100 Unit V s mV ppm/ C
1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production.
5.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:

All I/O pins are in input mode with a static value at VDD or VSS (no load) All peripherals are disabled except if it is explicitly mentioned The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK
The parameters given in Table 14 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10.
40/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 14.
Electrical characteristics
Maximum current consumption in Run mode, code with data processing running from Flash
Max(1) Parameter Conditions fHCLK TA = 85 C 36 MHz External clock (2), all peripherals enabled 24 MHz 16 MHz 8 MHz 36 MHz External clock (2), all peripherals Disabled 24 MHz 16 MHz 8 MHz 39 27 20 11 mA 22 16.5 12.5 8 Unit
Symbol
IDD
Supply current in Run mode
1. Based on characterization, not tested in production. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 15.
Maximum current consumption in Run mode, code with data processing running from RAM
Max(1) Parameter Conditions fHCLK TA = 85 C 36 MHz External clock (2), all peripherals enabled 24 MHz 16 MHz 8 MHz 36 MHz External clock(2) all peripherals disabled 24 MHz 16 MHz 8 MHz 34 24 17 10 mA 18 13 10 6 Unit
Symbol
IDD
Supply current in Run mode
1. Based on characterization, tested in production at VDD max, fHCLK max. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Doc ID 14610 Rev 7
41/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled
35
30
8 MHz 16 MHz 24 MHz 36 MHz
25 Consumption (mA)
20
15
10
5
0 -45 25 Temperature (C) 70 85
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled
18 16 8 MHz 14 12 10 8 6 4 2 0 -45 25 Temperature (C) 70 85 16 MHz 24 MHz 36 MHz
42/106
Consumption (mA)
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 16.
Electrical characteristics
Maximum current consumption in Sleep mode, code running from Flash or RAM
Max(1) Parameter Conditions fHCLK TA = 85 C 36 MHz External clock(2) all peripherals enabled 24 MHz 16 MHz 8 MHz 36 MHz External clock(2), all peripherals disabled 24 MHz 16 MHz 8 MHz 24 17 12.5 8 mA 6 5 4.5 4 Unit
Symbol
IDD
Supply current in Sleep mode
1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 17.
Symbol
Typical and maximum current consumptions in Stop and Standby modes
Typ(1) Parameter Conditions Max Unit
VDD/ VBAT VDD/ VBAT VDD/VBAT TA = = 2.0 V = 2.4 V = 3.3 V 85 C
Supply current in Stop mode
Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) Regulator in Low-power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) Low-speed internal RC oscillator and independent watchdog ON
34.5
35
379
24.5
25
365
IDD
3 2.8
3.8 3.6
-
A
Supply current in Standby mode
Low-speed internal RC oscillator ON, independent watchdog OFF Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF 1.05
1.9
2.1
5(2)
IDD_VBAT
Backup domain Low-speed oscillator and RTC ON supply current
1.1
1.4
2(2)
1. Typical values are measured at TA = 25 C. 2. Based on characterization, not tested in production.
Doc ID 14610 Rev 7
43/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 13. Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values
2.5
2
Consumption (A) 1.8 V
1.5
2V 2.4 V 3.3 V 3.6 V
1
0.5
0 -45 25
Temperature (C)
85
105
ai17337
Figure 14. Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values
300
250
Consumption (A)
200
150
100 2.4V 2.7V 3.0V 3.3V 3.6V -45 25 Temperature (C) 70 85
50
0
44/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Figure 15. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values
300
250
Consumption (A)
200
150
100 2.4V 2.7V 3.0V 3.3V 3.6V -45 25 Temperature (C) 70 85
50
0
Figure 16. Typical current consumption in Standby mode versus temperature at different VDD values
3.5
3
2.5 Consumption (A)
2
1.5
1
0.5
2.4V 2.7V 3.0V 3.3V 3.6V
0 -45 25 Temperature (C) 70 85
Doc ID 14610 Rev 7
45/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Typical current consumption
The MCU is placed under the following conditions:

All I/O pins are in input mode with a static value at VDD or VSS (no load) All peripherals are disabled except if it is explicitly mentioned The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling) When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4
The parameters given in Table 18 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 18. Typical current consumption in Run mode, code with data processing running from Flash
Typ(1) Symbol Parameter Conditions fHCLK All peripherals enabled(2) 26.6 18.5 12.8 7.2 4.2 2.7 2 1.6 1.3 26 17.9 12.2 6.6 3.6 2.1 1.4 1 0.7 Typ(1) All peripherals disabled 16.2 11.4 8.2 5 3.1 2.1 1.7 1.4 1.2 mA 36 MHz 24 MHz Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz 125 kHz
1. Typical values are measures at TA = 25 C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Unit
36 MHz 24 MHz 16 MHz 8 MHz External clock(3) 4 MHz 2 MHz 1 MHz 500 kHz IDD Supply current in Run mode 125 kHz
15.6 10.8 7.6 4.4 2.5 1.5 1.1 0.8 0.6
46/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 19.
Electrical characteristics
Typical current consumption in Sleep mode, code running from Flash or RAM
Typ(1) Typ(1) Unit Parameter Conditions fHCLK
Symbol
All peripherals All peripherals enabled(2) disabled 15.1 10.4 7.2 3.9 2.6 1.85 1.5 1.3 1.2 14.5 9.8 6.6 3.3 2 1.25 0.9 0.7 0.6 3.6 2.6 2 1.3 1.2 1.15 1.1 1.05 1.05
36 MHz 24 MHz 16 MHz 8 MHz External clock
(3)
4 MHz 2 MHz 1 MHz 500 kHz
IDD
Supply current in Sleep mode
125 kHz 36 MHz 24 MHz Running on High Speed Internal RC (HSI), AHB prescaler used to reduce the frequency 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz 125 kHz
mA 3 2 1.4 0.7 0.6 0.55 0.5 0.45 0.45
1. Typical values are measures at TA = 25 C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 20. The MCU is placed under the following conditions:

all I/O pins are in input mode with a static value at VDD or VSS (no load) all peripherals are disabled unless otherwise mentioned the given value is calculated by measuring the current consumption - - with all peripherals clocked off with only one peripheral clocked on
ambient operating temperature and VDD supply voltage conditions summarized in Table 7.
Doc ID 14610 Rev 7
47/106
Electrical characteristics Table 20.
STM32F101xC, STM32F101xD, STM32F101xE
Peripheral current consumption
Peripheral TIM2 TIM3 TIM4 TIM5 TIM6 TIM7 SPI2 Typical consumption at 25 C(1) 0.6 0.6 0.6 0.6 0.2 0.2 0.15 0.15 0.25 0.25 0.3 0.3 0.22 0.22 0.72 0.3 0.4 0.4 0.3 0.5 0.4 0.5 1.4 0.3 0.6 mA Unit
APB1
SPI3 USART2 USART3 UART4 UART5 I2C1 I2C2 DAC GPIOA GPIOB GPIOC GPIOD GPIOE
APB2 GPIOF GPIOG ADC
(2)
SPI1 USART1
1. fHCLK = 36 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. 2. Specific conditions for ADC: fHCLK = 28 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit in the ADC_CR2 register is set to 1.
5.3.6
External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 21 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10.
48/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 21.
Symbol fHSE_ext VHSEH VHSEL tw(HSE) tw(HSE) tr(HSE) tf(HSE) Cin(HSE)
Electrical characteristics
High-speed external user clock characteristics
Parameter User external clock source frequency(1) OSC_IN input pin high level voltage OSC_IN input pin low level voltage OSC_IN high or low time(1) OSC_IN rise or fall time(1) OSC_IN input capacitance(1) 45 VSS VIN VDD 5 55 1 Conditions Min 1 0.7VDD VSS 16 ns 20 pF % A Typ 8 Max 25 VDD V 0.3VDD Unit MHz
DuCy(HSE) Duty cycle IL OSC_IN Input leakage current
1. Guaranteed by design, not tested in production
Low-speed external user clock generated from an external source
The characteristics given in Table 22 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Table 22.
Symbol fLSE_ext VLSEH VLSEL tw(LSE) tw(LSE) tr(LSE) tf(LSE) Cin(LSE)
Low-speed user external clock characteristics
Parameter User external clock source frequency(1) OSC32_IN input pin high level voltage OSC32_IN input pin low level voltage OSC32_IN high or low time(1) OSC32_IN rise or fall OSC32_IN input capacitance(1) 30 VSS VIN VDD time(1) 5 70 1 0.7VDD VSS 450 ns 50 pF % A Conditions Min Typ 32.768 Max 1000 VDD V 0.3VDD Unit kHz
DuCy(LSE) Duty cycle IL OSC32_IN Input leakage current
1. Guaranteed by design, not tested in production.
Doc ID 14610 Rev 7
49/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 17. High-speed external clock source AC timing diagram
VHSEH 90% VHSEL 10% tr(HSE) THSE tf(HSE) tW(HSE) tW(HSE) t
External clock source
fHSE_ext OSC _IN
IL STM32F10xxx ai14127b
Figure 18. Low-speed external clock source AC timing diagram
VLSEH 90% VLSEL 10% tr(LSE) TLSE tf(LSE) tW(LSE) tW(LSE) t
External clock source
fLSE_ext
OSC32_IN
IL STM32F10xxx ai14140c
50/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 23.
Symbol fOSC_IN RF C
HSE 4-16 MHz oscillator characteristics(1)(2)
Parameter Oscillator frequency Feedback resistor Recommended load capacitance versus equivalent serial RS = 30 resistance of the crystal (RS)(3) HSE driving current Oscillator transconductance VDD = 3.3 V VIN = VSS with 30 pF load Startup VDD is stabilized 25 2 Conditions Min 4 Typ 8 200 30 Max 16 Unit MHz k pF
i2 gm
1
mA mA/V ms
tSU(HSE)(4) Startup time
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization results, not tested in production. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 19). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.
Doc ID 14610 Rev 7
51/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 19. Typical application with an 8 MHz crystal
Resonator with integrated capacitors CL1 OSC_IN 8 MH z resonator CL2 REXT(1) OSC_OU T RF Bias controlled gain STM32F10xxx ai14128b fHSE
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 24. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 24.
Symbol RF C(2)
LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Parameter Feedback resistor Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) LSE driving current Oscillator transconductance Startup time VDD is stabilized RS = 30 K VDD = 3.3 V VIN = VSS 5 3 Conditions Min Typ 5 15 Max Unit M pF
I2 gm tSU(LSE)(4)
1.4
A A/V s
1. Based on characterization, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers". 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Note:
For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
52/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Caution:
Electrical characteristics
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Figure 20. Typical application with a 32.768 kHz crystal
Resonator with integrated capacitors CL1 OSC32_IN 32.768 KH z resonator CL2 RF OSC32_OU T Bias controlled gain STM32F10xxx fLSE
ai14129b
5.3.7
Internal clock source characteristics
The parameters given in Table 25 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10.
High-speed internal (HSI) RC oscillator
Table 25.
Symbol fHSI
HSI oscillator characteristics(1)
Parameter Frequency User-trimmed with the RCC_CR register(2) Conditions Min Typ 8 1(3) -2 -1.5 -1.3 -1.1 1 80 2.5 2.2 2 1.8 2 100 Max Unit MHz % % % % % s A
ACCHSI
Accuracy of the HSI oscillator
TA = -40 to 105 C TA = -10 to 85 C Factory(4) calibrated TA = 0 to 70 C TA = 25 C
tsu(HSI)(4) IDD(HSI)(4)
HSI oscillator startup time HSI oscillator power consumption
1. VDD = 3.3 V, TA = -40 to 85 C unless otherwise specified. 2. Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com. 3. Guaranteed by design, not tested in production. 4. Based on characterization, not tested in production.
Doc ID 14610 Rev 7
53/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Low-speed internal (LSI) RC oscillator
Table 26.
Symbol fLSI(2) tsu(LSI)(3) IDD(LSI)(3) Frequency LSI oscillator startup time LSI oscillator power consumption 0.65
LSI oscillator characteristics (1)
Parameter Min 30 Typ 40 Max 60 85 1.2 Unit kHz s A
1. VDD = 3 V, TA = -40 to 85 C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production.
Wakeup time from low-power mode
The wakeup times given in Table 27 are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

Stop or Standby mode: the clock source is the RC oscillator Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 27.
Symbol tWUSLEEP(1) tWUSTOP(1) tWUSTDBY(1)
Low-power mode wakeup timings
Parameter Wakeup from Sleep mode Wakeup from Stop mode (regulator in run mode) Wakeup from Stop mode (regulator in low-power mode) Wakeup from Standby mode Typ 1.8 3.6 s 5.4 50 s Unit s
1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.
54/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
5.3.8
PLL characteristics
The parameters given in Table 28 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 28.
Symbol
PLL characteristics
Value Parameter PLL input clock(2) Min(1) 1 40 16 Typ 8.0 Max(1) 25 60 36 200 300 Unit MHz % MHz s ps
fPLL_IN fPLL_OUT tLOCK Jitter
PLL input clock duty cycle PLL multiplier output clock PLL lock time Cycle-to-cycle jitter
1. Based on characterization, not tested in production. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT.
5.3.9
Memory characteristics
Flash memory
The characteristics are given at TA = -40 to 85 C unless otherwise specified. Table 29.
Symbol tprog tERASE tME
Flash memory characteristics
Parameter 16-bit programming time Page (2 KB) erase time Mass erase time Conditions TA-40 to +85 C TA -40 to +85 C TA -40 to +85 C Read mode fHCLK = 36 MHz with 1 wait state, VDD = 3.3 V Write mode fHCLK = 36 MHz, VDD = 3.3 V Erase mode fHCLK = 36 MHz, VDD = 3.3 V Power-down mode / Halt, VDD = 3.0 to 3.6 V Min 40 20 20 Typ 52.5 Max(1) 70 40 40 28 Unit s ms ms mA
7
mA
IDD
Supply current
5
mA
50 2 3.6
A V
Vprog
Programming voltage
1. Guaranteed by design, not tested in production.
Doc ID 14610 Rev 7
55/106
Electrical characteristics Table 30.
Symbol NEND tRET
STM32F101xC, STM32F101xD, STM32F101xE
Flash memory endurance and data retention
Value Parameter Endurance Data retention Conditions TA = -40 C to 85 C TA = 85 C, 1 kcycle
(2)
Min(1) 10 30
Unit Typ Max kcycles Years
TA = 55 C, 10 kcycle(2)
20
1. Based on characterization, not tested in production. 2. Cycling performed over the whole temperature range.
5.3.10
FSMC characteristics
Asynchronous waveforms and timings
Figure 21 through Figure 24 represent asynchronous waveforms and Table 31 through Table 34 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

AddressSetupTime = 0 AddressHoldTime = 1 DataSetupTime = 1
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
tw(NE)
FSMC_NE
tv(NOE_NE) t w(NOE) t h(NE_NOE)
FSMC_NOE
FSMC_NWE
tv(A_NE)
FSMC_A[25:0]
Address
t h(A_NOE)
tv(BL_NE)
FSMC_NBL[1:0]
t h(BL_NOE)
t h(Data_NE) t su(Data_NOE) t su(Data_NE) th(Data_NOE)
FSMC_D[15:0]
t v(NADV_NE) tw(NADV)
Data
FSMC_NADV(1)
ai14991B
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
56/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 31.
Symbol tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) th(A_NOE) tv(BL_NE) th(BL_NOE) tsu(Data_NE)
Electrical characteristics
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) (2)
Parameter FSMC_NE low time FSMC_NEx low to FSMC_NOE low FSMC_NOE low time Min 5THCLK - 1.5 0.5 5THCLK - 1.5 Max 5THCLK + 2 1.5 5THCLK + 1.5 Unit ns ns ns ns 7 0.1 0 0 2THCLK + 25 2THCLK + 25 0 0 5 THCLK + 1.5 ns ns ns ns ns ns ns ns ns ns
FSMC_NOE high to FSMC_NE high hold time -1.5 FSMC_NEx low to FSMC_A valid Address hold time after FSMC_NOE high FSMC_NEx low to FSMC_BL valid FSMC_BL hold time after FSMC_NOE high Data to FSMC_NEx high setup time
tsu(Data_NOE) Data to FSMC_NOEx high setup time th(Data_NOE) th(Data_NE) tv(NADV_NE) tw(NADV)
1. CL = 15 pF. 2. Based on characterization, not tested in production.
Data hold time after FSMC_NOE high Data hold time after FSMC_NEx high FSMC_NEx low to FSMC_NADV low FSMC_NADV low time
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
tw(NE)
FSMC_NEx
FSMC_NOE
tv(NWE_NE) tw(NWE) t h(NE_NWE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:0]
Address
th(A_NWE)
tv(BL_NE)
FSMC_NBL[1:0]
tv(Data_NE) NBL
th(BL_NWE)
th(Data_NWE) Data
FSMC_D[15:0]
t v(NADV_NE) tw(NADV)
FSMC_NADV(1)
ai14990
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Doc ID 14610 Rev 7
57/106
Electrical characteristics Table 32.
Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) th(A_NWE) tv(BL_NE) th(BL_NWE) tv(Data_NE) th(Data_NWE) tv(NADV_NE) tw(NADV)
1. CL = 15 pF.
STM32F101xC, STM32F101xD, STM32F101xE
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Parameter FSMC_NE low time FSMC_NEx low to FSMC_NWE low FSMC_NWE low time FSMC_NWE high to FSMC_NE high hold time FSMC_NEx low to FSMC_A valid Address hold time after FSMC_NWE high FSMC_NEx low to FSMC_BL valid FSMC_BL hold time after FSMC_NWE high FSMC_NEx low to Data valid Data hold time after FSMC_NWE high FSMC_NEx low to FSMC_NADV low FSMC_NADV low time THCLK 5.5 THCLK + 1.5 THCLK - 0.5 THCLK + 7 THCLK 1.5 Min 3THCLK - 1 THCLK - 0.5 THCLK - 0.5 THCLK 7.5 Max 3THCLK + 2 THCLK + 1.5 THCLK + 1.5 Unit ns ns ns ns ns ns ns ns ns ns ns ns
2. Based on characterization, not tested in production.
Figure 23. Asynchronous multiplexed NOR/PSRAM read waveforms
tw(NE)
FSMC_NE
tv(NOE_NE) t h(NE_NOE)
FSMC_NOE
t w(NOE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:16]
Address
t h(A_NOE)
tv(BL_NE)
FSMC_NBL[1:0]
NBL
th(BL_NOE)
th(Data_NE) tsu(Data_NE) t v(A_NE) tsu(Data_NOE) Data th(Data_NOE)
FSMC_AD[15:0]
Address t v(NADV_NE) tw(NADV)
th(AD_NADV)
FSMC_NADV
ai14892b
58/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 33.
Symbol tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) th(A_NOE) th(BL_NOE) tv(BL_NE) tsu(Data_NE) th(Data_NE) th(Data_NOE)
1. CL = 15 pF. 2. Based on characterization, not tested in production.
Electrical characteristics
Asynchronous multiplexed NOR/PSRAM read timings(1)(2)
Parameter FSMC_NE low time FSMC_NEx low to FSMC_NOE low FSMC_NOE low time FSMC_NOE high to FSMC_NE high hold time FSMC_NEx low to FSMC_A valid FSMC_NEx low to FSMC_NADV low FSMC_NADV low time FSMC_AD (address) valid hold time after FSMC_NADV high Address hold time after FSMC_NOE high FSMC_BL hold time after FSMC_NOE high FSMC_NEx low to FSMC_BL valid Data to FSMC_NEx high setup time 2THCLK + 24 2THCLK + 25 0 0 3 THCLK -1.5 THCLK THCLK 0 0 Min 7THCLK - 2 4THCLK - 1 -1 0 5 THCLK + 1.5 Max 7THCLK + 2 4THCLK + 2 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
3THCLK - 0.5 3THCLK + 1.5
tsu(Data_NOE) Data to FSMC_NOE high setup time Data hold time after FSMC_NEx high Data hold time after FSMC_NOE high
Doc ID 14610 Rev 7
59/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 24. Asynchronous multiplexed NOR/PSRAM write waveforms
tw(NE)
FSMC_NEx
FSMC_NOE
tv(NWE_NE) tw(NWE) t h(NE_NWE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:16]
Address
th(A_NWE)
tv(BL_NE)
FSMC_NBL[1:0]
t v(A_NE) NBL
th(BL_NWE)
t v(Data_NADV) Data
th(Data_NWE)
FSMC_AD[15:0]
Address t v(NADV_NE) tw(NADV)
th(AD_NADV)
FSMC_NADV
ai14891B
Table 34.
Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) th(A_NWE) tv(BL_NE) th(BL_NWE)
Asynchronous multiplexed NOR/PSRAM write timings(1)(2)
Parameter FSMC_NE low time FSMC_NEx low to FSMC_NWE low FSMC_NWE low time FSMC_NWE high to FSMC_NE high hold time FSMC_NEx low to FSMC_A valid FSMC_NEx low to FSMC_NADV low FSMC_NADV low time FSMC_AD (address) valid hold time after FSMC_NADV high Address hold time after FSMC_NWE high FSMC_NEx low to FSMC_BL valid FSMC_BL hold time after FSMC_NWE high THCLK - 1.5 THCLK + 1.5 THCLK - 5 3 THCLK - 1 THCLK - 3 4THCLK 1.6 Min 5THCLK - 1 2THCLK 2THCLK - 1 THCLK - 1 7 5 THCLK + 1 Max 5THCLK + 2 2THCLK + 1 2THCLK + 2 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns
tv(Data_NADV) FSMC_NADV high to Data valid th(Data_NWE)
1. CL = 15 pF. 2. Based on characterization, not tested in production.
Data hold time after FSMC_NWE high
60/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Synchronous waveforms and timings
Figure 25 through Figure 28 represent synchronous waveforms and Table 36 through Table 38 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

BurstAccessMode = FSMC_BurstAccessMode_Enable; MemoryType = FSMC_MemoryType_CRAM; WriteBurst = FSMC_WriteBurst_Enable; CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual) DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Figure 25. Synchronous multiplexed NOR/PSRAM read timings
tw(CLK) FSMC_CLK Data latency = 1 td(CLKL-NExL) FSMC_NEx td(CLKL-NADVL) FSMC_NADV td(CLKL-AV) FSMC_A[25:16] td(CLKL-NOEL) FSMC_NOE td(CLKL-ADIV) td(CLKL-ADV) FSMC_AD[15:0] AD[15:0] tsu(NWAITV-CLKH) FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14893e
tw(CLK)
BUSTURN = 0
td(CLKH-NExH)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKH-NOEH)
tsu(ADV-CLKH)
th(CLKH-ADV) tsu(ADV-CLKH) D1 D2 th(CLKH-NWAITV)
th(CLKH-ADV)
tsu(NWAITV-CLKH)
th(CLKH-NWAITV)
Doc ID 14610 Rev 7
61/106
Electrical characteristics Table 35.
Symbol tw(CLK) td(CLKL-NExL) td(CLKH-NExH) td(CLKL-NADVL) td(CLKL-NADVH) td(CLKL-AV) td(CLKH-AIV) td(CLKL-NOEL) td(CLKH-NOEH) td(CLKL-ADV) td(CLKL-ADIV) tsu(ADV-CLKH) th(CLKH-ADV) FSMC_CLK period
STM32F101xC, STM32F101xD, STM32F101xE
Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Parameter Min 27.7 1.5 THCLK + 2 4 5 0 Max Unit ns ns ns ns ns ns ns THCLK +1 THCLK + 0.5 12 0 6 ns ns ns ns ns ns ns ns
FSMC_CLK low to FSMC_NEx low (x = 0...2) FSMC_CLK high to FSMC_NEx high (x = 0...2) FSMC_CLK low to FSMC_NADV low FSMC_CLK low to FSMC_NADV high FSMC_CLK low to FSMC_Ax valid (x = 16...25) FSMC_CLK high to FSMC_Ax invalid (x = 16...25) THCLK + 2 FSMC_CLK low to FSMC_NOE low FSMC_CLK high to FSMC_NOE high FSMC_CLK low to FSMC_AD[15:0] valid FSMC_CLK low to FSMC_AD[15:0] invalid FSMC_A/D[15:0] valid data before FSMC_CLK high
FSMC_A/D[15:0] valid data after FSMC_CLK high THCLK - 10 8 2
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAITV)
1. CL = 15 pF. 2. Based on characterization, not tested in production.
FSMC_NWAIT valid after FSMC_CLK high
62/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Figure 26. Synchronous multiplexed PSRAM write timings
tw(CLK) FSMC_CLK Data latency = 1 td(CLKL-NExL) FSMC_NEx td(CLKL-NADVL) FSMC_NADV td(CLKL-AV) FSMC_A[25:16] td(CLKL-NWEL) FSMC_NWE td(CLKL-ADIV) td(CLKL-ADV) FSMC_AD[15:0] AD[15:0] td(CLKL-Data) D1 td(CLKL-Data) td(CLKL-NADVH) tw(CLK)
Electrical characteristics
BUSTURN = 0
td(CLKH-NExH)
td(CLKH-AIV)
td(CLKH-NWEH)
D2
FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV) td(CLKL-NBLH) FSMC_NBL
ai14992d
Doc ID 14610 Rev 7
63/106
Electrical characteristics Table 36.
Symbol tw(CLK) td(CLKL-NExL) td(CLKH-NExH) td(CLKL-NADVL) td(CLKL-NADVH) td(CLKL-AV) td(CLKH-AIV) td(CLKL-NWEL) td(CLKH-NWEH) td(CLKL-ADV) td(CLKL-ADIV) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) td(CLKL-NBLH)
1. CL = 15 pF.
STM32F101xC, STM32F101xD, STM32F101xE
Synchronous multiplexed PSRAM write timings(1)(2)
Parameter FSMC_CLK period FSMC_CLK low to FSMC_Nex low (x = 0...2) FSMC_CLK high to FSMC_NEx high (x = 0...2) FSMC_CLK low to FSMC_NADV low FSMC_CLK low to FSMC_NADV high FSMC_CLK low to FSMC_Ax valid (x = 16...25) FSMC_CLK high to FSMC_Ax invalid (x = 16...25) FSMC_CLK low to FSMC_NWE low FSMC_CLK high to FSMC_NWE high FSMC_CLK low to FSMC_AD[15:0] valid FSMC_CLK low to FSMC_AD[15:0] invalid FSMC_A/D[15:0] valid after FSMC_CLK low FSMC_NWAIT valid before FSMC_CLK high FSMC_NWAIT valid after FSMC_CLK high FSMC_CLK low to FSMC_NBL high 7 2 1 3 6 THCLK +1 12 TCK + 2 1 5 0 THCLK + 2 4 Min 27.7 2 Max Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
2. Based on characterization, not tested in production.
64/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Figure 27. Synchronous non-multiplexed NOR/PSRAM read timings
tw(CLK) FSMC_CLK td(CLKL-NExL) FSMC_NEx td(CLKL-NADVL) FSMC_NADV td(CLKL-AV) FSMC_A[25:0] td(CLKL-NOEL) FSMC_NOE tsu(DV-CLKH) th(CLKH-DV) tsu(DV-CLKH) FSMC_D[15:0] tsu(NWAITV-CLKH) FSMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14894d
tw(CLK)
BUSTURN = 0
Data latency = 1
td(CLKH-NExH)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKH-NOEH)
th(CLKH-DV) D2
D1
th(CLKH-NWAITV)
tsu(NWAITV-CLKH)
th(CLKH-NWAITV)
Table 37.
Symbol tw(CLK) td(CLKL-NExL) td(CLKH-NExH) td(CLKL-NADVL)
Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Parameter FSMC_CLK period FSMC_CLK low to FSMC_NEx low (x = 0...2) FSMC_CLK high to FSMC_NEx high (x = 0...2) FSMC_CLK low to FSMC_NADV low FSMC_CLK low to FSMC_NADV high FSMC_CLK low to FSMC_Ax valid (x = 0...25) FSMC_CLK high to FSMC_Ax invalid (x = 0...25) THCLK + 4 FSMC_CLK low to FSMC_NOE low FSMC_CLK high to FSMC_NOE high THCLK + 1.5 5 0 THCLK + 2 4 Min 27.7 1.5 Max Unit ns ns ns ns ns ns ns THCLK + 1.5 ns ns ns ns ns ns
td(CLKL-NADVH) td(CLKL-AV) td(CLKH-AIV) td(CLKL-NOEL) td(CLKH-NOEH) tsu(DV-CLKH) th(CLKH-DV)
FSMC_D[15:0] valid data before FSMC_CLK high 6.5 FSMC_D[15:0] valid data after FSMC_CLK high 7 7 2
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high th(CLKH-NWAITV)
1. CL = 15 pF. 2. Based on characterization, not tested in production.
FSMC_NWAIT valid after FSMC_CLK high
Doc ID 14610 Rev 7
65/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 28. Synchronous non-multiplexed PSRAM write timings
tw(CLK) FSMC_CLK td(CLKL-NExL) FSMC_NEx td(CLKL-NADVL) FSMC_NADV td(CLKL-AV) FSMC_A[25:0] td(CLKL-NWEL) FSMC_NWE td(CLKL-Data) FSMC_D[15:0] D1 td(CLKL-Data) D2 td(CLKH-NWEH) td(CLKH-AIV) td(CLKL-NADVH) Data latency = 1 td(CLKH-NExH) tw(CLK) BUSTURN = 0
FSMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) td(CLKL-NBLH) th(CLKH-NWAITV) FSMC_NBL
ai14993e
Table 38.
Symbol tw(CLK) td(CLKL-NExL) td(CLKH-NExH)
Synchronous non-multiplexed PSRAM write timings(1)(2)
Parameter FSMC_CLK period FSMC_CLK low to FSMC_NEx low (x = 0...2) FSMC_CLK high to FSMC_NEx high (x = 0...2) FSMC_CLK low to FSMC_NADV low FSMC_CLK low to FSMC_NADV high FSMC_CLK low to FSMC_Ax valid (x = 16...25) FSMC_CLK high to FSMC_Ax invalid (x = 16...25) FSMC_CLK low to FSMC_NWE low FSMC_CLK high to FSMC_NWE high FSMC_D[15:0] valid data after FSMC_CLK low FSMC_NWAIT valid before FSMC_CLK high FSMC_NWAIT valid after FSMC_CLK high FSMC_CLK low to FSMC_NBL high 7 2 1 THCLK + 1 6 TCK + 2 1 5 0 THCLK + 2 4 Min 27.7 2 Max Unit ns ns ns ns ns ns ns ns ns ns ns ns ns
td(CLKL-NADVL) td(CLKL-NADVH) td(CLKL-AV) td(CLKH-AIV) td(CLKL-NWEL) td(CLKH-NWEH) td(CLKL-Data) tsu(NWAITV-CLKH) th(CLKH-NWAITV) td(CLKL-NBLH)
1. CL = 15 pF.
2. Based on characterization, not tested in production.
66/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
PC Card/CompactFlash controller waveforms and timings
Figure 29 through Figure 34 represent synchronous waveforms and Table 39 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

COM.FSMC_SetupTime = 0x04; COM.FSMC_WaitSetupTime = 0x07; COM.FSMC_HoldSetupTime = 0x04; COM.FSMC_HiZSetupTime = 0x00; ATT.FSMC_SetupTime = 0x04; ATT.FSMC_WaitSetupTime = 0x07; ATT.FSMC_HoldSetupTime = 0x04; ATT.FSMC_HiZSetupTime = 0x00; IO.FSMC_SetupTime = 0x04; IO.FSMC_WaitSetupTime = 0x07; IO.FSMC_HoldSetupTime = 0x04; IO.FSMC_HiZSetupTime = 0x00; TCLRSetupTime = 0; TARSetupTime = 0;
Figure 29. PC Card/CompactFlash controller waveforms for common memory read access
FSMC_NCE4_2(1) FSMC_NCE4_1 tv(NCEx-A) FSMC_A[10:0] td(NREG-NCEx) td(NIORD-NCEx) FSMC_NREG FSMC_NIOWR FSMC_NIORD th(NCEx-NREG) th(NCEx-NIORD) th(NCEx-NIOWR) th(NCEx-AI)
FSMC_NWE td(NCE4_1-NOE) FSMC_NOE tsu(D-NOE) FSMC_D[15:0] ai14895b th(NOE-D) tw(NOE)
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
Doc ID 14610 Rev 7
67/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 30. PC Card/CompactFlash controller waveforms for common memory write access
FSMC_NCE4_1
FSMC_NCE4_2
High tv(NCE4_1-A) th(NCE4_1-AI)
FSMC_A[10:0] th(NCE4_1-NREG) th(NCE4_1-NIORD) th(NCE4_1-NIOWR)
td(NREG-NCE4_1) td(NIORD-NCE4_1) FSMC_NREG FSMC_NIOWR FSMC_NIORD td(NCE4_1-NWE) FSMC_NWE
tw(NWE)
td(NWE-NCE4_1)
FSMC_NOE MEMxHIZ =1 td(D-NWE) tv(NWE-D) FSMC_D[15:0] th(NWE-D)
ai14896b
68/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Figure 31. PC Card/CompactFlash controller waveforms for attribute memory read access
FSMC_NCE4_1 tv(NCE4_1-A) FSMC_NCE4_2 High th(NCE4_1-AI)
FSMC_A[10:0]
FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) FSMC_NREG th(NCE4_1-NREG)
FSMC_NWE td(NCE4_1-NOE) FSMC_NOE tsu(D-NOE) FSMC_D[15:0](1)
ai14897b
tw(NOE)
td(NOE-NCE4_1)
th(NOE-D)
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
Doc ID 14610 Rev 7
69/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory write access
FSMC_NCE4_1
FSMC_NCE4_2
High tv(NCE4_1-A) th(NCE4_1-AI)
FSMC_A[10:0]
FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) FSMC_NREG td(NCE4_1-NWE) FSMC_NWE td(NWE-NCE4_1) FSMC_NOE tv(NWE-D) FSMC_D[7:0](1) tw(NWE) th(NCE4_1-NREG)
ai14898b
1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).
Figure 33. PC Card/CompactFlash controller waveforms for I/O space read access
FSMC_NCE4_1 FSMC_NCE4_2 tv(NCEx-A) FSMC_A[10:0] FSMC_NREG FSMC_NWE FSMC_NOE th(NCE4_1-AI)
FSMC_NIOWR td(NIORD-NCE4_1) FSMC_NIORD tsu(D-NIORD) FSMC_D[15:0]
ai14899B
tw(NIORD)
td(NIORD-D)
70/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Figure 34. PC Card/CompactFlash controller waveforms for I/O space write access
FSMC_NCE4_1 FSMC_NCE4_2 tv(NCEx-A) FSMC_A[10:0] th(NCE4_1-AI)
FSMC_NREG FSMC_NWE FSMC_NOE FSMC_NIORD td(NCE4_1-NIOWR) FSMC_NIOWR ATTxHIZ =1 tv(NIOWR-D) FSMC_D[15:0]
ai14900b
tw(NIOWR)
th(NIOWR-D)
Table 39.
Symbol tv(NCEx-A) tv(NCE4_1-A)
Switching characteristics for PC Card/CF read and write cycles(1)(2)
Parameter FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10) FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10) FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10) FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1 high to FSMC_NREG invalid FSMC_NCE4_1 low to FSMC_NOE low FSMC_NOE low width FSMC_NOE high to FSMC_NCE4_1 high FSMC_D[15:0] valid data before FSMC_NOE high FSMC_D[15:0] valid data after FSMC_NOE high FSMC_NWE low width FSMC_NWE high to FSMC_NCE4_1 high FSMC_NCE4_1 low to FSMC_NWE low FSMC_NWE low to FSMC_D[15:0] valid FSMC_NWE high to FSMC_D[15:0] invalid 11THCLK THCLK + 3 5THCLK + 2 8THCLK -1.5 8THCLK + 1 5THCLK + 2 25 15 8THCLK - 1 5THCLK + 2 5THCLK + 1.5 0 8THCLK + 2 Min Max Unit
0
ns
th(NCEx-AI) th(NCE4_1-AI) td(NREG-NCEx) td(NREG-NCE4_1) th(NCEx-NREG) th(NCE4_1-NREG) td(NCE4_1-NOE) tw(NOE) td(NOE-NCE4_1 tsu(D-NOE) th(NOE-D) tw(NWE) td(NWE-NCE4_1) td(NCE4_1-NWE) tv(NWE-D) th(NWE-D)
2.5
ns
5
ns ns ns ns ns ns ns ns ns ns ns ns
Doc ID 14610 Rev 7
71/106
Electrical characteristics Table 39.
Symbol td(D-NWE) tw(NIOWR) tv(NIOWR-D) th(NIOWR-D)
STM32F101xC, STM32F101xD, STM32F101xE
Switching characteristics for PC Card/CF read and write cycles(1)(2) (continued)
Parameter FSMC_D[15:0] valid before FSMC_NWE high FSMC_NIOWR low width FSMC_NIOWR low to FSMC_D[15:0] valid FSMC_NIOWR high to FSMC_D[15:0] invalid 11THCLK 5THCLK+3ns 5THCLK - 5 5THCLK + 2.5 5THCLK - 5 4.5 9 8THCLK + 2 Min 13THCLK 8THCLK + 3 5THCLK +1 Max Unit ns ns ns ns ns ns ns ns ns ns ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid FSMC_NCEx high to FSMC_NIOWR invalid th(NCEx-NIOWR) th(NCE4_1-NIOWR) FSMC_NCE4_1 high to FSMC_NIOWR invalid td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid td(NIORD-NCE4_1) FSMC_NCE4_1 low to FSMC_NIORD valid th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD invalid th(NCE4_1-NIORD) FSMC_NCE4_1 high to FSMC_NIORD invalid tsu(D-NIORD) td(NIORD-D) tw(NIORD)
1. CL = 15 pF. 2. Based on characterization, not tested in production.
FSMC_D[15:0] valid before FSMC_NIORD high FSMC_D[15:0] valid after FSMC_NIORD high FSMC_NIORD low width
NAND controller waveforms and timings
Figure 35 through Figure 38 represent synchronous waveforms and Table 40 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

COM.FSMC_SetupTime = 0x01; COM.FSMC_WaitSetupTime = 0x03; COM.FSMC_HoldSetupTime = 0x02; COM.FSMC_HiZSetupTime = 0x01; ATT.FSMC_SetupTime = 0x01; ATT.FSMC_WaitSetupTime = 0x03; ATT.FSMC_HoldSetupTime = 0x02; ATT.FSMC_HiZSetupTime = 0x01; Bank = FSMC_Bank_NAND; MemoryDataWidth = FSMC_MemoryDataWidth_16b; ECC = FSMC_ECC_Enable; ECCPageSize = FSMC_ECCPageSize_512Bytes; TCLRSetupTime = 0; TARSetupTime = 0;
72/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Figure 35. NAND controller waveforms for read access
FSMC_NCEx
Electrical characteristics
Low
ALE (FSMC_A17) CLE (FSMC_A16)
FSMC_NWE td(ALE-NOE) FSMC_NOE (NRE) tsu(D-NOE) FSMC_D[15:0] th(NOE-D) th(NOE-ALE)
ai14901b
Figure 36. NAND controller waveforms for write access
FSMC_NCEx
Low
ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NWE) FSMC_NWE th(NWE-ALE)
FSMC_NOE (NRE) tv(NWE-D) FSMC_D[15:0] th(NWE-D)
ai14902b
Figure 37. NAND controller waveforms for common memory read access
FSMC_NCEx
Low
ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NOE) FSMC_NWE tw(NOE) FSMC_NOE tsu(D-NOE) FSMC_D[15:0] th(NOE-D) th(NOE-ALE)
ai14912b
Doc ID 14610 Rev 7
73/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 38. NAND controller waveforms for common memory write access
FSMC_NCEx
Low
ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NOE) FSMC_NWE tw(NWE) th(NOE-ALE)
FSMC_NOE td(D-NWE) tv(NWE-D) FSMC_D[15:0] th(NWE-D)
ai14913b
Table 40.
Symbol td(D-NWE)(2) tw(NOE)
(2)
Switching characteristics for NAND Flash read and write cycles(1)
Parameter FSMC_D[15:0] valid before FSMC_NWE high FSMC_NOE low width FSMC_D[15:0] valid data before FSMC_NOE high Min 6THCLK + 12 4THCLK - 1.5 4THCLK + 1.5 25 Max Unit ns ns ns ns 4THCLK + 2.5 0 10THCLK + 4 3THCLK + 1.5 3THCLK + 4.5 3THCLK + 2 3THCLK + 4.5 ns ns ns ns ns ns ns
tsu(D-NOE)(2) th(NOE-D)(2) tw(NWE)
(2)
FSMC_D[15:0] valid data after FSMC_NOE high 7 FSMC_NWE low width FSMC_NWE low to FSMC_D[15:0] valid FSMC_NWE high to FSMC_D[15:0] invalid FSMC_ALE valid before FSMC_NWE low FSMC_NWE high to FSMC_ALE invalid 4THCLK - 1
tv(NWE-D)(2) th(NWE-D)(2) td(ALE-NWE)(3) th(NWE-ALE)(3) th(NOE-ALE)(3)
1. CL = 15 pF.
td(ALE-NOE)(3) FSMC_ALE valid before FSMC_NOE low FSMC_NWE high to FSMC_ALE invalid
2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production.
74/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
5.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (Electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in Table 41. They are based on the EMS levels and classes defined in application note AN1709. Table 41.
Symbol VFESD
EMS characteristics
Parameter Conditions Level/Class 2B
VDD 3.3 V, LQFP144, Voltage limits to be applied on any I/O pin to TA +25 C, fHCLK 36 MHz induce a functional disturbance conforms to IEC 61000-4-2 Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD3.3 V, LQFP144, TA +25 C, fHCLK 36 MHz conforms to IEC 61000-4-4
VEFTB
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as:

Corrupted program counter Unexpected reset Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Doc ID 14610 Rev 7
75/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 42. EMI characteristics
Conditions Monitored frequency band Max vs. [fHSE/fHCLK] Unit 8/36 MHz 8 27 26 4 dBV
Symbol Parameter
SEMI
Peak level
0.1 MHz to 30 MHz VDD 3.3 V, TA 25 C, 30 MHz to 130 MHz LQFP144 package compliant with 130 MHz to 1 GHz IEC 61967-2 SAE EMI Level
5.3.12
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 43.
Symbol VESD(HBM) VESD(CDM)
ESD absolute maximum ratings
Ratings Conditions Class Maximum value(1) Unit 2000 V 500
Electrostatic discharge TA +25 C, conforming 2 voltage (human body model) to JESD22-A114 Electrostatic discharge TA +25 C, conforming II voltage (charge device model) to JESD22-C101
1. Based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:

A supply overvoltage is applied to each power supply pin A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78 IC latch-up standard. Table 44.
Symbol LU
Electrical sensitivities
Parameter Static latch-up class Conditions TA +85 C conforming to JESD78A Class II level A
76/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
5.3.13
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 45.
Symbol VIL VIH VIL VIH
I/O static characteristics
Parameter Conditions Min -0.5 TTL ports 2 2 -0.5 CMOS ports 0.65 VDD 200 5% VDD(3) VSS VIN VDD Standard I/Os VIN = 5 V I/O FT 1 A 3 30 30 40 40 5 50 50 k k pF Typ Max 0.8 V VDD+0.5 5.5V 0.35 VDD VDD+0.5 mV mV V Unit
Input low level voltage Standard IO input high level voltage IO FT(1) input high level voltage Input low level voltage Input high level voltage Standard IO Schmitt trigger voltage hysteresis(2)
Vhys
IO FT Schmitt trigger voltage hysteresis(2)
Ilkg
Input leakage current (3)
RPU RPD CIO
Weak pull-up equivalent resistor(4) Weak pull-down equivalent resistor(5) I/O pin capacitance
VIN VSS VIN VDD
1. FT = Five-volt tolerant. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than max. if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).
All I/Os are CMOS and TTL compliant (no software configuration required), their characteristics consider the most strict CMOS-technology or TTL parameters:
For VIH: - - if VDD is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included if VDD is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included if VDD is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included if VDD is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included
For VIL: - -
Doc ID 14610 Rev 7
77/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed VOL). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 8). The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 8).
Output voltage levels
Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 46.
Symbol VOL(1) VOH(2) VOL(1) VOH(2) VOL(1) VOH (2) VOL(1) VOH(2)
Output voltage characteristics
Parameter Output Low level voltage for an I/O pin when 8 pins are sunk at the same time Output High level voltage for an I/O pin when 8 pins are sourced at the same time Output low level voltage for an I/O pin when 8 pins are sunk at the same time Output high level voltage for an I/O pin when 8 pins are sourced at the same time Output low level voltage for an I/O pin when 8 pins are sunk at the same time Output high level voltage for an I/O pin when 8 pins are sourced at the same time Output low level voltage for an I/O pin when 8 pins are sunk at the same time Output high level voltage for an I/O pin when 8 pins are sourced at the same time Conditions TTL port, IIO = +8 mA, 2.7 V < VDD < 3.6 V CMOS port IIO = +8 mA 2.7 V < VDD < 3.6 V Min Max 0.4 V VDD-0.4 0.4 V 2.4 1.3 V VDD-1.3 0.4 V VDD-0.4 Unit
IIO = +20 mA(3) 2.7 V < VDD < 3.6 V
IIO = +6 mA(3) 2 V < VDD < 2.7 V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 3. Based on characterization data, not tested in production.
78/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 39 and Table 47, respectively. Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 47.
MODEx [1:0] bit value(1)
I/O AC characteristics(1)
Symbol Parameter Conditions CL = 50 pF, VDD = 2 V to 3.6 V Max 2 125(3) CL = 50 pF, VDD = 2 V to 3.6 V 125 CL= 50 pF, VDD = 2 V to 3.6 V
(3)
Unit MHz
fmax(IO)out Maximum frequency(2) 10 tf(IO)out tr(IO)out Output high to low level fall time Output low to high level rise time
ns
fmax(IO)out Maximum frequency(2) 01 tf(IO)out tr(IO)out Output high to low level fall time Output low to high level rise time
10 25(3)
MHz
CL= 50 pF, VDD = 2 V to 3.6 V 25(3) CL= 30 pF, VDD = 2.7 V to 3.6 V 50 30 20 5(3) 8(3) 12(3) 5(3) 8(3) 12(3) 10
ns
MHz MHz MHz
Fmax(IO)out Maximum
Frequency(2)
CL = 50 pF, VDD = 2.7 V to 3.6 V CL = 50 pF, VDD = 2 V to 2.7 V CL = 30 pF, VDD = 2.7 V to 3.6 V
11
tf(IO)out
Output high to low level fall time
CL = 50 pF, VDD = 2.7 V to 3.6 V CL = 50 pF, VDD = 2 V to 2.7 V CL = 30 pF, VDD = 2.7 V to 3.6 V
ns
tr(IO)out
Output low to high level rise time Pulse width of external signals detected by the EXTI controller
CL = 50 pF, VDD = 2.7 V to 3.6 V CL = 50 pF, VDD = 2 V to 2.7 V
-
tEXTIpw
ns
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 39. 3. Guaranteed by design, not tested in production.
Doc ID 14610 Rev 7
79/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 39. I/O AC characteristics definition
90% 50% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out T 10% 50% 90% tr(I O)out
Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF
ai14131
5.3.14
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 45). Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 48.
Symbol VIL(NRST)(1) VIH(NRST)(1) Vhys(NRST) RPU VF(NRST)
(1)
NRST pin characteristics
Parameter NRST Input low level voltage NRST Input high level voltage NRST Schmitt trigger voltage hysteresis Weak pull-up equivalent resistor(2) NRST Input filtered pulse 300 VIN VSS 30 Conditions Min -0.5 2 200 40 50 100 Typ Max 0.8 V VDD+0.5 mV k ns ns Unit
VNF(NRST)(1) NRST Input not filtered pulse
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).
Figure 40. Recommended NRST pin protection
VDD NRST(2) RPU Filter 0.1 F Internal Reset
External reset circuit(1)
STM32F10xxx
ai14132c
1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 48. Otherwise the reset will not be taken into account by the device.
80/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
5.3.15
TIM timer characteristics
The parameters given in Table 49 are guaranteed by design. Refer to Section 5.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 49.
Symbol tres(TIM)
TIMx(1) characteristics
Parameter Timer resolution time fTIMxCLK = 36 MHz Timer external clock frequency on CH1 to CH4 Timer resolution 16-bit counter clock period when internal clock is selected 1 fTIMxCLK = 36 MHz 0.0278 27.8 0 fTIMxCLK = 36 MHz 0 fTIMxCLK/2 18 16 65536 1820 65536 x 65536 Conditions Min 1 Max Unit tTIMxCLK ns MHz MHz bit tTIMxCLK s tTIMxCLK s
fEXT ResTIM tCOUNTER
tMAX_COUNT Maximum possible count
fTIMxCLK = 36 MHz
119.2
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
5.3.16
Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 10. The STM32F101xC, STM32F101xD and STM32F101xE access line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as opendrain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 50. Refer also to Section 5.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).
Doc ID 14610 Rev 7
81/106
Electrical characteristics Table 50.
Symbol tw(SCLL) tw(SCLH) tsu(SDA) th(SDA) tr(SDA) tr(SCL) tf(SDA) tf(SCL) th(STA) tsu(STA) tsu(STO) tw(STO:STA) Cb
STM32F101xC, STM32F101xD, STM32F101xE
I2C characteristics
Standard mode I2C(1) Fast mode I2C(1)(2) Parameter Min SCL clock low time SCL clock high time SDA setup time SDA data hold time SDA and SCL rise time SDA and SCL fall time Start condition hold time Repeated Start condition setup time Stop condition setup time Stop to Start condition time (bus free) Capacitive load for each bus line 4.0 4.7 4.0 4.7 400 4.7 4.0 250 0
(3)
Unit Max Min 1.3 s 0.6 100 0(4) 1000 300 0.6 s 0.6 0.6 1.3 400 s s pF 20+0.1Cb 900(3) 300 300 ns Max
1. Guaranteed by design, not tested in production. 2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I2C frequency. 3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal. 4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.
82/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Figure 41. I2C bus AC waveforms and measurement circuit(1)
VDD 4 .7 k IC bus VDD 4 .7 k
100 100
STM32F10xxx
SDA SCL
S TART REPEATED S TART tsu(STA) SDA tf(SDA) th(STA) SCL tw(SCKH) S TART
tr(SDA) tw(SCKL)
tsu(SDA) th(SDA) S TOP
tsu(STA:STO)
tr(SCK)
tf(SCK)
tsu(STO)
ai14127c
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 51.
SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V)(1)(2)
fSCL (kHz) 400 300 200 100 50 20 I2C_CCR value RP = 4.7 k 0x801E 0x8028 0x803C 0x00B4 0x0168 0x0384
1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the tolerance on the achieved speed 2%. These variations depend on the accuracy of the external components used to design the application.
Doc ID 14610 Rev 7
83/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 52 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 52.
Symbol fSCK 1/tc(SCK) tr(SCK) tf(SCK) DuCy(SCK) tsu(NSS)(2) th(NSS)
(2) (2)
SPI characteristics(1)
Parameter SPI clock frequency Slave mode SPI clock rise and fall time Capacitive load: C = 30 pF 30 4tPCLK 2tPCLK 50 5 5 5 4 0 2 3tPCLK 10 25 5 15 2 ns 60 18 8 70 ns % Conditions Master mode Min Max 18 MHz Unit
SPI slave input clock duty Slave mode cycle NSS setup time NSS hold time SCK high and low time Slave mode Slave mode Master mode, fPCLK = 36 MHz, presc = 4 Master mode Data input setup time Slave mode Master mode Data input hold time Slave mode Data output access time Data output disable time Data output valid time Data output valid time Data output hold time Master mode (after enable edge) Slave mode, fPCLK = 20 MHz Slave mode Slave mode (after enable edge) Master mode (after enable edge) Slave mode (after enable edge)
tw(SCKH) tw(SCKL)(2) tsu(MI) (2) tsu(SI)(2) th(MI)
(2)
th(SI)(2) ta(SO)(2)(3) tdis(SO)(2)(4) tv(SO) tv(MO)
(2)(1) (2)(1)
th(SO)(2) th(MO)(2)
1. Remapped SPI1 characteristics to be determined. 2. Based on characterization, not tested in production. 3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
84/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Figure 42. SPI timing diagram - slave mode and CPHA=0
NSS input tc(SCK) tSU(NSS) SCK Input CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 ta(SO) MISO OUT P UT tsu(SI) MOSI I NPUT M SB IN th(SI) B I T1 IN
Electrical characteristics
th(NSS)
tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) LSB OUT
tv(SO) MS B O UT
th(SO) BI T6 OUT
tdis(SO)
LSB IN
ai14134c
Figure 43. SPI timing diagram - slave mode and CPHA=1(1)
NSS input tSU(NSS)
SCK Input
tc(SCK)
th(NSS)
CPHA=1 CPOL=0 CPHA=1 CPOL=1
tw(SCKH) tw(SCKL) tr(SCK) tf(SCK)
ta(SO) MISO OUT P UT tsu(SI) MOSI I NPUT M SB IN
tv(SO) MS B O UT th(SI)
th(SO) BI T6 OUT
tdis(SO) LSB OUT
B I T1 IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Doc ID 14610 Rev 7
85/106
Electrical characteristics Figure 44. SPI timing diagram - master mode(1)
High NSS input tc(SCK)
STM32F101xC, STM32F101xD, STM32F101xE
SCK Input SCK Input
CPHA= 0 CPOL=0 CPHA= 0 CPOL=1
CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT MOSI OUTUT tw(SCKH) tw(SCKL) MS BIN th(MI) M SB OUT tv(MO) B I T1 OUT th(MO)
ai14136
tr(SCK) tf(SCK) BI T6 IN LSB IN
LSB OUT
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
5.3.17
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 10.
Note:
It is recommended to perform a calibration after each power-up.
86/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 53.
Symbol VDDA VREF+ IVREF fADC fS(2) fTRIG(2) VAIN RAIN(2)
Electrical characteristics
ADC characteristics
Parameter Power supply Positive reference voltage Current on the VREF input pin ADC clock frequency Sampling rate External trigger frequency Conversion voltage range(3) See Equation 1 and Table 54 for details fADC = 14 MHz 0.6 0.05 Conditions Min 2.4 2.4 160(1) Typ Max 3.6 VDDA 220(1) 14 1 823 17 0 (VSSA or VREFtied to ground) VREF+ Unit V V A MHz MHz kHz 1/fADC V
External input impedance
50 1 8
k k pF s 1/fADC
RADC(2) Sampling switch resistance CADC(2) tCAL(2) tlat(2) tlatr(2) tS(2) tSTAB(2) tCONV(2) Internal sample and hold capacitor Calibration time Injection trigger conversion latency Regular trigger conversion latency Sampling time Power-up time Total conversion time (including sampling time) fADC = 14 MHz fADC = 14 MHz 5.9 83 fADC = 14 MHz
0.214 3
(4)
s 1/fADC s 1/fADC s 1/fADC s s
fADC = 14 MHz
0.143 2(4)
fADC = 14 MHz
0.107 1.5 0 1 0
17.1 239.5 1 18
14 to 252 (tS for sampling +12.5 for 1/fADC successive approximation)
1. Based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. 3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package. Refer to Section 3: Pinouts and pin descriptions for further details. 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 53.
Equation 1: RAIN max formula: TS R AIN ------------------------------------------------------------- - R ADC N+2 f ADC C ADC ln 2
Doc ID 14610 Rev 7
87/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 54.
RAIN max for fADC = 14 MHz(1)
Ts (cycles) tS (s) 0.11 0.54 0.96 2.04 2.96 3.96 5.11 17.1 0.4 5.9 11.4 25.2 37.2 50 NA NA RAIN max (k)
1.5 7.5 13.5 28.5 41.5 55.5 71.5 239.5
1. Guaranteed by design, not tested in production.
Table 55.
Symbol ET EO EG ED EL
ADC accuracy - limited test conditions(1)(2)
Parameter Total unadjusted error Offset error Gain error Differential linearity error Integral linearity error Test conditions fPCLK2 = 28 MHz, fADC = 14 MHz, RAIN < 10 k, VDDA = 3 V to 3.6 V, TA = 25 C Measurements made after ADC calibration VREF+ = VDDA Typ 1.3 1 0.5 0.7 0.8 Max(3) 2 1.5 1.5 1 1.5 LSB Unit
1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.13 does not affect the ADC accuracy. 3. Based on characterization, not tested in production.
88/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 56.
Symbol ET EO EG ED EL
Electrical characteristics
ADC accuracy(1) (2)(3)
Parameter Total unadjusted error Offset error Gain error Differential linearity error Integral linearity error fPCLK2 = 28 MHz, fADC = 14 MHz, RAIN < 10 k, VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration Test conditions Typ 2 1.5 1.5 1 1.5 Max(4) 5 2.5 3 2 3 LSB Unit
1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges. 3. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.13 does not affect the ADC accuracy. 4. Based on characterization, not tested in production.
Figure 45. ADC accuracy characteristics
V V [1LSBIDEAL = REF+ (or DDA depending on package)] 4096 4096
EG 4095 4094 4093 (2) ET 7 6 5 4 3 2 1 0 1 VSSA 2 3 4 1 LSBIDEAL EO EL ED (3) (1) ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
5
6
7
4093 4094 4095 4096 VDDA
ai14395b
Doc ID 14610 Rev 7
89/106
Electrical characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 46. Typical connection diagram using the ADC
VDD VT 0.6 V AINx VT 0.6 V IL1 A STM32F10xxx Sample and hold ADC converter RADC(1) 12-bit converter CADC(1)
RAIN(1)
VAIN Cparasitic
ai14139d
1. Refer to Table 53 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 47 or Figure 48, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 47. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F10xxx
V REF+
1 F // 10 nF
V DDA
1 F // 10 nF V SSA/V REF-
ai14380b
1. VREF+ and VREF- inputs are available only on 100-pin packages.
90/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Electrical characteristics
Figure 48. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F10xxx
VREF+/VDDA
1 F // 10 nF
VREF-/VSSA
ai14381b
1. VREF+ and VREF- inputs are available only on 100-pin packages.
5.3.18
Table 57.
Symbol VDDA VREF+ VSSA RLOAD(2) RO(2)
DAC electrical specifications
DAC characteristics
Parameter Analog supply voltage Reference supply voltage Ground Resistive load with buffer ON Impedance output with buffer OFF Min 2.4 2.4 0 5 Typ 3.6 3.6 0 Max(1) Unit V V V k When the buffer is OFF, the minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 M Maximum capacitive load at DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x155) and (0xEAB) at VREF+ = 2.4 V. It gives the maximum output excursion of the DAC. VREF+ - 1LSB V VREF+ must always be below VDDA Comments
15
k
CLOAD(2)
Capacitive load
50
pF
DAC_OUT min(2) DAC_OUT max(2) DAC_OUT min(2) DAC_OUT max(2)
Lower DAC_OUT voltage with buffer ON Higher DAC_OUT voltage with buffer ON Lower DAC_OUT voltage with buffer OFF Higher DAC_OUT voltage with buffer OFF
0.2
V
VDDA - 0.2 0.5
V mV
Doc ID 14610 Rev 7
91/106
Electrical characteristics Table 57.
Symbol
STM32F101xC, STM32F101xD, STM32F101xE
DAC characteristics (continued)
Parameter DAC DC current consumption in quiescent mode (Standby mode) Min Typ Max(1) Unit Comments With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs. With no load, middle code (0x800) on the inputs. With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs. Given for the DAC in 10-bit configuration. Given for the DAC in 12-bit configuration. Given for the DAC in 10-bit configuration. Given for the DAC in 12-bit configuration. Given for the DAC in 12-bit configuration. Given for the DAC in 10-bit at VREF+ = 3.6 V. Given for the DAC in 12-bit at VREF+ = 3.6 V. Given for the DAC in 12bit configuration.
IDDVREF+
220
A
380 IDDA DAC DC current consumption in quiescent mode (Standby mode)
A
480
A
DNL(3)
Differential non linearity Difference between two consecutive code-1LSB) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)
0.5
LSB
2 1 4 10
LSB LSB LSB mV LSB LSB %
INL(3)
Offset(3)
Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2)
3 12
Gain error(3) Gain error Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value 1LSB
0.5
tSETTLING(3)
3
4
s
CLOAD 50 pF, RLOAD 5 k
Max frequency for a correct DAC_OUT change when small Update rate(3) variation in the input code (from code i to i+1LSB) tWAKEUP(3) PSRR+ (2) Wakeup time from off state (Setting the ENx bit in the DAC Control register) Power supply rejection ratio (to VDDA) (static DC measurement 6.5
1
MS/s CLOAD 50 pF, RLOAD 5 k CLOAD 50 pF, RLOAD 5 k input code between lowest and highest possible ones. No RLOAD, CLOAD = 50 pF
10
s
-67
-40
dB
1. Guaranteed by characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Guaranteed by characterization, not tested in production.
92/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Figure 49. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC Buffer(1)
Electrical characteristics
R LOAD 12-bit digital to analog converter DACx_OUT
C LOAD
ai17157
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.
5.3.19
Temperature sensor characteristics
Table 58.
Symbol TL(1) V25(1) tSTART(2) TS_temp(3)(2)
TS characteristics
Parameter VSENSE linearity with temperature 4.0 1.34 4 Min Typ Max Unit C mV/C V s s
1
4.3 1.43
2
4.6 1.52 10 17.1
Avg_Slope(1) Average slope Voltage at 25C Startup time ADC sampling time when reading the temperature
1. Guaranteed by characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations.
Doc ID 14610 Rev 7
93/106
Package characteristics
STM32F101xC, STM32F101xD, STM32F101xE
6
6.1
Package characteristics
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. Figure 50. Recommended PCB design rules (0.80/0.75 mm pitch BGA)
Dpad Dsm Solder paste Dpad Dsm
0.37 mm 0.52 mm typ. (depends on solder mask registration tolerance 0.37 mm aperture diameter
- Non solder mask defined pads are recommended - 4 to 6 mils screen print
ai15469
94/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Package characteristics
Figure 51. LFBGA144 - 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline
C Seating plane A2 A4 A3 B D D1 e M F F A A A1 ddd C
E1 E
e
Ob (144 balls) Ball A1 O eee M C A O fff M C B
X3_ME
1. Drawing is not to scale.
Table 59.
LFBGA144 - 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data
millimeters inches(1) Max 1.70 0.21 1.07 0.27 0.85 0.35 9.85 0.40 10.00 8.80 9.85 10.00 8.80 0.80 0.60 0.10 0.15 0.08 10.15 0.3878 0.45 10.15 0.0138 0.3878 0.0157 0.3937 0.3465 0.3937 0.3465 0.0315 0.0236 0.0039 0.0059 0.0031 0.3996 0.0083 0.0421 0.0106 0.0335 0.0177 0.3996 Typ Min Max 0.0669
Symbol Min A A1 A2 A3 A4 b D D1 E E1 e F ddd eee fff Typ
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 14610 Rev 7
95/106
Package characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 52. LQFP144, 20 x 20 mm, 144-pin thin quad flat package outline(1)
Seating plane C
Figure 53. Recommended footprint(1)(2)
A
A2 A1 ccc C
b
c 0.25 mm gage plane D D1 D3 A1
73 72
108 73 1.35
k
109
0.35
72
L L1
0.5
108
17.85 19.9 22.6
109
144
37
E1 E3
E
1 19.9 22.6
ai149
36
144
37 1 36
Pin 1 identification
e
ME_1A
1. Drawing is not to scale. 2. Dimensions are in millimeters.
Table 60.
Symbol
LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data
millimeters Min Typ Max 1.60 0.05 1.35 0.17 0.09 21.80 19.80 22.00 20.00 17.50 21.80 19.80 22.00 20.00 17.50 0.50 0.45 0.60 1.00 0 3.5 0.08 7 0 0.75 0.0177 22.20 20.20 0.8583 0.7795 1.40 0.22 0.15 1.45 0.27 0.20 22.20 20.20 0.002 0.0531 0.0067 0.0035 0.8583 0.7795 0.8661 0.7874 0.689 0.8661 0.7874 0.689 0.0197 0.0236 0.0394 3.5 0.0031 7 0.0295 0.874 0.7953 0.0551 0.0087 Min inches(1) Typ Max 0.063 0.0059 0.0571 0.0106 0.0079 0.874 0.7953
A A1 A2 b c D D1 D3 E E1 E3 e L L1 k ccc
1. Values in inches are converted from mm and rounded to 4 decimal digits.
96/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Package characteristics
Figure 54. LQFP100 - 14 x 14 mm, 100-pin low-profile Figure 55. Recommended footprint(1)(2) quad flat package outline(1)
0.25 mm 0.10 inch GAGE PLANE k
75
D D1 D3
75 76 51
51
L L1 C
50
76
0.5
50
0.3 16.7 14.3
b E3 E1 E
100
26 1.2
1
100 26 25
25 12.3
Pin 1 1 identification e
ccc
C
16.7 ai14906b
A1 A2 A SEATING PLANE C
1L_ME
1. Drawing is not to scale. 2. Dimensions are in millimeters.
Table 61.
Symbol
LQPF100 - 14 x 14 mm, 100-pin low-profile quad flat package mechanical data
millimeters Min Typ Max 1.60 0.05 1.35 0.17 0.09 15.80 13.80 16.00 14.00 12.00 15.80 13.80 16.00 14.00 12.00 0.50 0.45 0.60 1.00 0 3.5 0.08 7 0 0.75 0.0177 16.20 14.20 0.622 0.5433 1.40 0.22 0.15 1.45 0.27 0.20 16.20 14.20 0.002 0.0531 0.0067 0.0035 0.622 0.5433 0.6299 0.5512 0.4724 0.6299 0.5512 0.4724 0.0197 0.0236 0.0394 3.5 0.0031 7 0.0295 0.6378 0.5591 0.0551 0.0087 Min inches(1) Typ Max 0.063 0.0059 0.0571 0.0106 0.0079 0.6378 0.5591
A A1 A2 b c D D1 D3 E E1 E3 e L L1 k ccc
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 14610 Rev 7
97/106
Package characteristics
STM32F101xC, STM32F101xD, STM32F101xE
Figure 56. LQFP64 - 10 x 10 mm, 64 pin low-profile quad Figure 57. Recommended flat package outline(1) footprint(1)(2)
A A2 A1
49 48 33 0.3 0.5 32
E
E1
b
12.7 10.3
e
64
10.3 17 1.2 1 7.8 16
D1 D L1 L
c
12.7 ai14909
ai14398b
1. Drawing is not to scale. 2. Dimensions are in millimeters.
Table 62.
Symbol
LQFP64 - 10 x 10 mm, 64 pin low-profile quad flat package mechanical data
millimeters Min Typ Max 1.60 0.05 1.35 0.17 0.09 12.00 10.00 12.00 10.00 0.50 0 0.45 3.5 0.60 1.00 Number of pins 7 0.75 0 0.0177 1.40 0.22 0.15 1.45 0.27 0.20 0.0020 0.0531 0.0067 0.0035 0.4724 0.3937 0.4724 0.3937 0.0197 3.5 0.0236 0.0394 7 0.0295 0.0551 0.0087 Min inches(1) Typ Max 0.0630 0.0059 0.0571 0.0106 0.0079
A A1 A2 b c D D1 E E1 e L L1 N
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
98/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Package characteristics
6.2
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in Table 10: General operating conditions on page 38. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where:

TA max is the maximum ambient temperature in C, JA is the package junction-to-ambient thermal resistance, in C/W, PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max = (VOL x IOL) + ((VDD - VOH) x IOH),
PI/O max represents the maximum power dissipation on output pins where: taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 63.
Symbol
Package thermal characteristics
Parameter Thermal resistance junction-ambient LQFP144 - 20 x 20 mm / 0.5 mm pitch Value 30 46 45 C/W Unit
JA
Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch
6.2.1
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.
Doc ID 14610 Rev 7
99/106
Package characteristics
STM32F101xC, STM32F101xD, STM32F101xE
6.2.2
Evaluating the maximum junction temperature for an application
When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 64: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. Here, only temperature range 6 is available (-40 to 85 C). The following example shows how to calculate the temperature range needed for a given application, making it possible to check whether the required temperature range is compatible with the STM32F10xxx junction temperature range.
Example: High-performance application
Assuming the following application conditions: Maximum ambient temperature TAmax = 82 C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA x 3.5 V= 175 mW PIOmax = 20 x 8 mA x 0.4 V + 8 x 20 mA x 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 64 TJmax is calculated as follows: - For LQFP64, 45 C/W TJmax = 82 C + (45 C/W x 447 mW) = 82 C + 20.1 C = 102.1 C This is within the junction temperature range of the STM32F10xxx (-40 < TJ < 105 C). Figure 58. LQFP64 PD max vs. TA
700 600 500 400 300 200 100 0 65 75 85 95 105 115
Suffix 6
PD (mW)
TA (C)
100/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE
Part numbering
7
Part numbering
Table 64.
Example: Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 101 = access line Pin count R = 64 pins V = 100 pins Z = 144 pins Flash memory size C = 256 Kbytes of Flash memory D = 384 Kbytes of Flash memory E = 512 Kbytes of Flash memory Package T = LQFP Temperature range 6 = Industrial temperature range, -40 to 85 C. Options xxx = programmed parts TR = tape and real
Ordering information scheme
STM32 F 101 R C T 6 xxx
For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.
Doc ID 14610 Rev 7
101/106
Revision history
STM32F101xC, STM32F101xD, STM32F101xE
8
Revision history
Table 65.
Date 07-Apr-2008
Document revision history
Revision 1 Initial release. Document status promoted from Target Specification to Preliminary Data. Section 1: Introduction and Section 2.2: Full compatibility throughout the family modified. Small text changes. Note 1 added in Table 2: STM32F101xC, STM32F101xD and STM32F101xE features and peripheral counts on page 11. LQPF100/BGA100 column added to Table 6: FSMC pin definition on page 31. Values added to Maximum current consumption on page 40 (see Table 14, Table 15, Table 16 and Table 17). Values added to Typical current consumption on page 46 (see Table 18, Table 19 and Table 20 and see Figure 11, Figure 12, Figure 14, Figure 15 and Figure 16). Table 19: Typical current consumption in Standby mode removed. Figure 53: Recommended footprint(1) on page 96 corrected. Equation 1 corrected. Section 6.2.2: Evaluating the maximum junction temperature for an application on page 100 added. Document status promoted from Preliminary Data to full datasheet. FSMC (flexible static memory controller) on page 15 modified. Power supply supervisor on page 17 modified and VDDA added to Table 10: General operating conditions on page 38. Table notes revised in Section 5: Electrical characteristics. Capacitance modified in Figure 9: Power supply scheme on page 35. Table 51: SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V) updated. Table 52: SPI characteristics modified, th(NSS) modified in Figure 42: SPI timing diagram - slave mode and CPHA=0 on page 85. Minimum SDA and SCL fall time value for Fast mode removed from Table 50: I2C characteristics on page 82, note 1 modified. IDD_VBAT values added to Table 17: Typical and maximum current consumptions in Stop and Standby modes on page 43. Table 30: Flash memory endurance and data retention on page 56 updated. fHCLK corrected in Table 41: EMS characteristics. tsu(NSS) modified in Table 52: SPI characteristics. EO corrected in Table 56: ADC accuracy on page 89. fPCLK2 corrected in Table 55: ADC accuracy - limited test conditions and Table 56: ADC accuracy. Figure 46: Typical connection diagram using the ADC on page 90 and note below corrected. Typical TS_temp value removed from Table 58: TS characteristics on page 93. Section 6.1: Package mechanical data on page 94 updated. Small text changes. Changes
22-May-2008
2
21-Jul-2008
3
102/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 65.
Date
Revision history
Document revision history (continued)
Revision Changes General-purpose timers (TIMx) on page 19 updated. Table 3: STM32F101xx family updated to show the low-density family. Table 4: Timer feature comparison added Figure 1: STM32F101xC, STM32F101xD and STM32F101xE access line block diagram updated. Note 9 added, main function after reset and Note 5 updated in Table 5: High-density STM32F101xx pin definitions. Note 2 modified below Table 7: Voltage characteristics on page 36, |VDDx| min and |VDDx| min removed. Measurement conditions specified in Section 5.3.5: Supply current characteristics on page 40. General input/output characteristics on page 77 modified. Max values at TA = 85 C updated in Table 17: Typical and maximum current consumptions in Stop and Standby modes on page 43. Section 5.3.10: FSMC characteristics on page 56 revised. Values added to Table 42: EMI characteristics on page 76. IVREF added to Table 53: ADC characteristics on page 87. Table 63: Package thermal characteristics on page 99 updated. Small text changes.
12-Dec-2008
4
Doc ID 14610 Rev 7
103/106
Revision history Table 65.
Date
STM32F101xC, STM32F101xD, STM32F101xE Document revision history (continued)
Revision Changes I/O information clarified on page 1. Number of ADC peripherals corrected in Table 2: STM32F101xC, STM32F101xD and STM32F101xE features and peripheral counts. In Table 5: High-density STM32F101xx pin definitions: - I/O level of pins PF11, PF12, PF13, PF14, PF15, G0, G1 and G15 updated - PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column. PG14 pin description modified in Table 6: FSMC pin definition. Figure 6: Memory map on page 33 modified. Note modified in Table 14: Maximum current consumption in Run mode, code with data processing running from Flash and Table 16: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 14, Figure 15 and Figure 16 show typical curves (titles changed). Table 21: High-speed external user clock characteristics and Table 22: Low-speed user external clock characteristics modified. ACCHSI max values modified in Table 25: HSI oscillator characteristics FSMC configuration modified for Asynchronous waveforms and timings. Notes modified below Figure 21: Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms and Figure 22: Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms. tw(NADV) values modified in Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings and Table 34: Asynchronous multiplexed NOR/PSRAM write timings. th(Data_NWE) modified in Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings. In Table 36: Synchronous multiplexed PSRAM write timings and Table 38: Synchronous non-multiplexed PSRAM write timings: - tv(Data-CLK) renamed as td(CLKL-Data) - td(CLKL-Data) min value removed and max value added - th(CLKL-DV) / th(CLKL-ADV) removed Figure 25: Synchronous multiplexed NOR/PSRAM read timings, Figure 26: Synchronous multiplexed PSRAM write timings and Figure 28: Synchronous non-multiplexed PSRAM write timings modified. Small text changes.
30-Mar-2009
5
104/106
Doc ID 14610 Rev 7
STM32F101xC, STM32F101xD, STM32F101xE Table 65.
Date
Revision history
Document revision history (continued)
Revision Changes Figure 1: STM32F101xC, STM32F101xD and STM32F101xE access line block diagram modified. Note 5 updated and Note 4 added in Table 5: High-density STM32F101xx pin definitions. VRERINT and TCoeff added to Table 13: Embedded internal reference voltage. fHSE_ext min modified in Table 21: High-speed external user clock characteristics. Table 23: HSE 4-16 MHz oscillator characteristics modified. Note 1 modified below Figure 19: Typical application with an 8 MHz crystal. Figure 40: Recommended NRST pin protection modified. CL1 and CL2 replaced by C in Table 23: HSE 4-16 MHz oscillator characteristics and Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz), notes modified and moved below the tables. Table 25: HSI oscillator characteristics modified. Conditions removed from Table 27: Low-power mode wakeup timings. Jitter added to Table 28: PLL characteristics. In Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings: th(BL_NOE) and th(A_NOE) modified. In Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings: th(A_NWE) and th(Data_NWE) modified. In Table 33: Asynchronous multiplexed NOR/PSRAM read timings: th(AD_NADV) and th(A_NOE) modified. In Table 34: Asynchronous multiplexed NOR/PSRAM write timings: th(A_NWE) modified. In Table 35: Synchronous multiplexed NOR/PSRAM read timings: th(CLKH-NWAITV) modified. In Table 40: Switching characteristics for NAND Flash read and write cycles: th(NOE-D) modified. Table 52: SPI characteristics modified. CADC and RAIN parameters modified in Table 53: ADC characteristics. RAIN max values modified in Table 54: RAIN max for fADC = 14 MHz. Table 57: DAC characteristics modified. Figure 49: 12-bit buffered /nonbuffered DAC added. Number of DACs corrected in Table 3: STM32F101xx family. IDD_VBAT updated in Table 17: Typical and maximum current consumptions in Stop and Standby modes. Figure 13: Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values added. IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to IEC 61967-2 in Section 5.3.11: EMC characteristics on page 75. Table 57: DAC characteristics modified. Small text changes.
21-Jul-2009
6
24-Sep-2009
7
Doc ID 14610 Rev 7
105/106
STM32F101xC, STM32F101xD, STM32F101xE
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
106/106
Doc ID 14610 Rev 7


▲Up To Search▲   

 
Price & Availability of STM32F101RCT6TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X